2023届广西钦州市钦南区犀牛角中学数学九年级第一学期期末综合测试试题含解析_第1页
2023届广西钦州市钦南区犀牛角中学数学九年级第一学期期末综合测试试题含解析_第2页
2023届广西钦州市钦南区犀牛角中学数学九年级第一学期期末综合测试试题含解析_第3页
2023届广西钦州市钦南区犀牛角中学数学九年级第一学期期末综合测试试题含解析_第4页
2023届广西钦州市钦南区犀牛角中学数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.抛物线的顶点坐标是()A.(2, 0) B.(-2, 0) C.(0, 2) D.(0, -2)2.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.304.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为().A.3.4m B.4.7m C.5.1m D.6.8m5.分式方程的根是()A. B. C. D.无实根6.某药品原价为100元,连续两次降价后,售价为64元,则的值为()A.10 B.20 C.23 D.367.如图所示的几何体的俯视图是()A. B. C. D.8.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A. B.C. D.9.一元二次方程的解为()A. B., C., D.,10.方程x2-x-1=0的根是(

)A., B.​,C., D.没有实数根11.反比例函数y=的图象经过点(2,5),若点(1,n)在此反比例函数的图象上,则n等于()A.10 B.5 C.2 D.12.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,则k的取值范围是()A.k≤ B.k< C.k≥ D.k>二、填空题(每题4分,共24分)13.若,则=_________.14.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.15.已知正比例函数的图像与反比例函数的图像有一个交点的坐标是,则它们的另一个交点坐标为_________.16.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab的值是____________.17.已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为_______.18.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是_____.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,抛物线交y轴于点为A,顶点为D,对称轴与x轴交于点H.(1)求顶点D的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.20.(8分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.21.(8分)已知关于x的一元二次方程.(1)若是方程的一个解,写出、满足的关系式;(2)当时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的、的值,并求出此时方程的根.22.(10分)解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).23.(10分)如图,中,,点是延长线上一点,平面上一点,连接平分.(1)若,求的度数;(2)若,求证:24.(10分)如图,某实践小组为测量某大学的旗杆和教学楼的高,先在处用高米的测角仪测得旗杆顶端的仰角,此时教学楼顶端恰好在视线上,再向前走米到达处,又测得教学楼顶端的仰角,点三点在同一水平线上,(参考数据:)(1)计算旗杆的高;(2)计算教学楼的高.25.(12分)新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.26.如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:;;.根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;结合函数图象,直接写出当的面积等于时,的长度约为____.

参考答案一、选择题(每题4分,共48分)1、A【分析】依据抛物线的解析式即可判断顶点坐标.【详解】解:∵抛物线,∴抛物线的顶点坐标为(2,0).故选A.【点睛】掌握抛物线y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键.2、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、D【详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.4、C【分析】由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.【详解】解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,

故△ABC∽△AED,由相似三角形的性质,设树高x米,

则,

∴x=5.1m.

故选:C.【点睛】本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.5、A【分析】观察可得分式方程的最简公分母为,去分母,转化为整式方程求解.【详解】方程去分母得:,解得:,检验:将代入,所以是原方程的根.故选:A.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6、B【解析】根据题意可列出一元二次方程100(1-)²=64,即可解出此题.【详解】依题意列出方程100(1-)²=64,解得a=20,(a=180,舍去)故选B.【点睛】此题主要考察一元二次方程的应用,依题意列出方程是解题的关键.7、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.8、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解.【详解】解:分三种情况讨论:(1)当0≤t≤1时,点P在AD边上,点Q在AB边上,∴S=,∴此时抛物线经过坐标原点并且开口向上;(1)当1<t≤1.5时,点P与点D重合,点Q在BC边上,∴S==2,∴此时,函数值不变,函数图象为平行于t轴的线段;(2)当1.5<t≤2.5时,点P与点D重合,点Q在CD边上,∴S=×2×(7﹣1t))=﹣t+.∴函数图象是一条线段且S随t的增大而减小.故选:C.【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解.9、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】∴或∴,故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.10、C【解析】先求出根的判别式b2-4ac=(-1)2-4×1×(-1)=5>0,然后根据一元二次方程的求根公式为,求出这个方程的根是x==.故选C.11、A【解析】解:因为反比例函数y=的图象经过点(2,5),所以k=所以反比例函数的解析式为y=,将点(1,n)代入可得:n=10.故选:A12、D【解析】根据题意可以得到1-3k<0,从而可以求得k的取值范围,本题得以解决.【详解】∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,∴1-3k<0,解得,k>,故选D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(每题4分,共24分)13、【解析】根据分式的性质即可解答.【详解】∵=1+=,∴=∴=【点睛】此题主要考查分式的性质,解题的关键是熟知分式的运算性质.14、20°【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.15、(-1,-2)【分析】根据反比例函数图象的对称性得到反比例函数图象与正比例函数图象的两个交点关于原点对称,所以写出点关于原点对称的点的坐标即可.【详解】∵正比例函数的图像与反比例函数的图像的两个交点关于原点对称,其中一个交点的坐标为,∴它们的另一个交点的坐标是.

故答案为:.【点睛】本题主要考查了反比例函数图象的中心对称性,理解反比例函数与正比例函数的交点一定关于原点对称是关键.16、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.17、16或1【分析】结合垂径定理和勾股定理,在Rt△OCE中,求得OE的长,则AE=OA+OE或AE=OA-OE,据此即可求解.【详解】解:如图,连接OC,∵⊙O的直径AB=20∴OC=OA=OB=10∵弦CD⊥AB于点E∴CE=CD=8,在Rt△OCE中,OE=则AE=OA+OE=10+6=16,如图:同理,此时AE=OA-OE=10-6=1,故AE的长是16或1.【点睛】本题考查勾股定理和垂径定理的应用,根据题意做出图形是本题的解题关键,注意分类讨论.18、.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图像上的点的坐标特征得到A点(2,0),B点(0,2),易得△AOB为等腰直角三角形,则AB=2,所以,EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1,设F点坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),根据反比例函数图象上的点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,则E点坐标为(,),继而可求得k的值.【详解】如图,作FH⊥x轴,EC⊥y轴,FH与EC交于D,由直线y=﹣x+2可知A点坐标为(2,0),B点坐标为(0,2),OA=OB=2,∴△AOB为等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故答案为.【点睛】本题考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(共78分)19、(1)顶点D(m,1-m);(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.【解析】试题分析:把抛物线的方程配成顶点式,即可求得顶点坐标.把点代入求出抛物线方程,根据平移规律,即可求解.分两种情况进行讨论.试题解析:(1)∵,∴顶点D(m,1-m).(1)∵抛物线过点(1,-1),∴.即,∴或(舍去),∴抛物线的顶点是(1,-1).∵抛物线的顶点是(1,1),∴向左平移了1个单位,向上平移了1个单位.(3)∵顶点D在第二象限,∴.情况1,点A在轴的正半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍).情况1,点A在轴的负半轴上,如图(1).作于点G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍),或20、4πcm2【分析】由旋转知△A′BC′≌△ABC,两个三角形的面积S△A′BC′=S△ABC,将三角形△A′BC′旋转到三角形△ABC,变成一个扇面,阴影面积=大扇形A′BA面积-小扇形C′OC面积即可.【详解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,由旋转知△A′BC′≌△ABC∴S△A′BC′=S△ABC,∴S阴影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC=S扇形ABA′-S扇形CBC′=×(42-22)=4π(cm2).【点睛】本题考查阴影部分面积问题,关键利用顺时针旋转△A′C′B到△ACB,补上△A′C′B内部的阴影面积,使图形变成一个扇面,用扇形面积公式求出大扇形面积与小扇形面积.21、(1);(2)原方程有两个不相等的实数根;(3),,(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a+1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a、b的值,再代入方程解方程即可.【详解】解:(1)把代入方程可得,故a、b满足的关系式为;(2)△,∵,∴△,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=,即,取,(取值不唯一),则方程为,解得.【点睛】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.22、(1)x=2±;(2)x=或x=.【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2±.(2)∵(2x﹣1)2=4(2x﹣1),∴(2x﹣1﹣4)(2x﹣1)=0,∴x=或x=.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.23、(1);(2)详见解析【分析】(1)根据等腰三角形的性质及角平分线的性质证得∠A=∠BCE,再利用角的和差关系及外角性质可证得∠ABC=∠DCE,从而得到结果;(2)根据∠ABC=∠DBE可证得∠ABD=∠CBE,再结合(1)利用ASA可证明与全等,从而得到结论.【详解】解:(1),,又平分,,,又,,;(2)由(1)知,,,即,在与中,,≌(ASA),.【点睛】本题考查了等腰三角形的性质,角平分线的性质,外角性质,全等三角形的判定与性质,熟记性质定理是解题关键.24、(1)旗杆的高约为米;(2)教学楼

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论