




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省威海市文登区八校2025届数学九上期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤12.若点在反比例函数上,则的值是()A. B. C. D.3.函数与,在同一坐标系中的图象可能是()A.B.C.D.4.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°5.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为()A. B.0 C. D.6.式子有意义的的取值范围()A.x≥4 B.x≥2 C.x≥0且x≠4 D.x≥0且x≠27.若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.只有一个实数根8.下列图形中,不是轴对称图形的是()A. B. C. D.9.函数中,自变量的取值范围是()A. B. C. D.x≤1或x≠010.已知一元二次方程的较小根为x1,则下面对x1的估计正确的是A. B. C. D.11.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.12.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.15cm B.20cm C.25cm D.30cm二、填空题(每题4分,共24分)13.在一个不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同.现从盒子里随机摸出一个小球(不放回),设该小球上的数字为m,再从盒子中摸出一个小球,设该小球上的数字为n,点P的坐标为,则点P落在抛物线与x轴所围成的区域内(含边界)的概率是________.14.如图,在的矩形方框内有一个不规则的区城(图中阴影部分所示),小明同学用随机的办法求区域的面积.若每次在矩形内随机产生10000个点,并记录落在区域内的点的个数,经过多次试验,计算出落在区域内点的个数的平均值为6700个,则区域的面积约为___________.15.当时,二次函数有最大值4,则实数的值为________.16.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.17.已知关于x的方程的一个根是1,则k的值为__________.18.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.三、解答题(共78分)19.(8分)解下列方程(1)(2)20.(8分)如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.21.(8分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=____;同种操作,如图3,S阴影3=1--()2-()3=__________;如图4,S阴影4=1--()2-()3-()4=___________;……若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.于是归纳得到:+()2+()3+…+()n=_________.(理论推导)(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.解:设S=1+2+22+23+24+…+22015+22016,①将①×2得:2S=2+22+23+24+…+22016+22017,②由②-①得:2S—S=22017—1,即=22017-1.即1+2+22+23+24+…+22015+22016=22017-1根据上述材料,试求出+()2+()3+…+()n的表达式,写出推导过程.(规律应用)(3)比较+++……__________1(填“”、“”或“=”)22.(10分)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.23.(10分)如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)若A,E,O三点共线,求CF的长;(2)求△CDF的面积的最小值.24.(10分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态25.(12分)实验探究:如图,和是有公共顶点的等腰直角三角形,,交于、点.(问题发现)(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;(类比探究)(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;(拓展延伸)(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.26.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.2、C【分析】将点(-2,-6)代入,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.3、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,
我们易得函数y=ax2+a的图象关于y轴对称,可排除A;
当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;
当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,
函数y=(a≠0)的图象位于第二、四象限,可排除B;
故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.4、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).5、A【分析】由题意根据坐标的变化找出变化规律并依此规律结合2017=504×4+1即可得出点A2017的坐标进而得出横坐标.【详解】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0,).∵A2A3⊥A1A2,∴点A3的坐标为(-3,0).同理可得:A4(0,-3),A5(9,0),A6(0,9),…,∴A4n+1(()4n,0),A4n+2(0,()4n+1),A4n+3(-()4n+2,0),A4n+4(0,-()4n+3)(n为自然数).∵2017=504×4+1,∴A2017(()2016,0),即(31008,0),点A2017的横坐标为.故选:A.【点睛】本题考查规律型中点的坐标以及含30度角的直角三角形,根据点的变化找出变化规律是解题的关键.6、C【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:且,解得:且.故选:C.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后应排除不在取值范围内的值.7、A【分析】反比例函数的图象分布在二、四象限,则k小于0,再根据根的判别式判断根的情况.【详解】∵反比例函数的图象分布在二、四象限∴k<0则则方程有两个不相等的实数根故答案为:A.【点睛】本题考查了一元二次方程方程根的情况,务必清楚时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程没有实数根.8、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.9、D【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】根据题意得,且,
解得:且.
故选:D.【点睛】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.10、A【解析】试题分析:解得,∴较小根为.∵,∴.故选A.11、A【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选A.【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.12、D【分析】根据底面周长=展开图的弧长可得出结果.【详解】解:设这个圆锥的底面半径为r,
根据题意得2πr=,
解得r=30(cm),
即这个圆锥的底面半径为30cm.
故选:D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(每题4分,共24分)13、【分析】采用画树状图法写出的所有可能出现的结果,画出函数图像,并描出在抛物线与x轴所围成的区域内(含边界)点,再用符合题意的点的个数除以总个数,即可求出答案.【详解】如图,由树状图可知共有20种等可能结果,由坐标系可知,在抛物线与x轴所围成的区域内(含边界)的点有(0,0)、(1,3),(2,0)、(3,3),(3,0),(4,0),共6种结果,∴点在抛物线上的概率是=,故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.15、2或【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m,且开口向下,
①m<-2时,x=-2取得最大值,-(-2-m)2+m2+1=4,
解得,,∴不符合题意,
②-2≤m≤1时,x=m取得最大值,m2+1=4,
解得,所以,③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,
解得m=2,
综上所述,m=2或时,二次函数有最大值.
故答案为:2或.【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.16、或【解析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.【详解】当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为.【点睛】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.17、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、1.【解析】试题解析:设圆锥的母线长为R,解得:R=6,∴圆锥侧面展开图的弧长为:6π,∴圆锥的底面圆半径是6π÷2π=1.故答案为1.三、解答题(共78分)19、(1);(2).【分析】(1)方程变形后,利用因式分解法即可求解;(2)方程变形后,利用因式分解法即可求解.【详解】(1)方程变形得:,
分解因式得:,
即:或,∴;(2)方程变形得:,
分解因式得:,
即:或,∴.【点睛】本题考查了一元二次方程的解法,灵活运用因式分解法是解决本题的关键.20、(1)y=﹣x2﹣2x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出点A的坐标,根据抛物线的对称轴是x=﹣1,求出点C的坐标,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,﹣m2﹣2m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PF∥y轴交直线AB于点F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标.【详解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴点A(1,0),∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,∴﹣1×2﹣1=﹣3,即点C(﹣3,0),∴,解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵点P在直线AB上方的抛物线上运动,∴设点P(m,﹣m2﹣2m+3),∵抛物线与直线y=x﹣1交于A、B两点,∴,解得:,∴点B(﹣4,﹣5),如图,过点P作PF∥y轴交直线AB于点F,则点F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴当m=时,P最大,∴点P(,).(3)当x=﹣1时,y=﹣1﹣1=﹣2,∴点E(﹣1,﹣2),如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,∵以点B、C、E、D为顶点的四边形是平行四边形,∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,联立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解.21、(1);;;()n;1-()n;(2)+()2+()3+…+()n=1-()n,推导过程见解析;(3)=【分析】(1)根据有理数的混合运算计算前几项结果,并观察得出规律即可得解
(2)根据材料中的计算求和的方法即可求解;
(3)根据(2)的化简结果,结合极限思想即可比较大小.【详解】解:(1)S阴影2=1--()2=1-==,S阴影3=1--()2-()3=1-==,S阴影4=1--()2-()3-()4==,⋯S阴影n=1--()2-()3-…-()n=()n,于是归纳得到:+()2+()3+…+()n=1-()n故答案为:;;;()n;1-()n(2)解:设S=+()2+()3+…+()n,①将①×得:S=()2+()3+)4…+()n+()n+1,②①-②得:S=-()n+1,③将③×2得:S=1-()n即得+()2+()3+…+()n=1-()n(3)=,理由如下:∵+++……=1-()n,当n越来越大时,()n越来越小,越来越接近零,由极限的思想可知:当n趋于无穷时,()n就等于0,故1-()n就等于1,故答案为:=【点睛】本题考查了数字的变化类、有理数的混合运算,解决的本题的关键是寻找规律并利用规律.22、证明见解析【解析】(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF∥BC,于是∠OEC=∠BCE,等量代换∠OEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;
(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.【详解】解:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF.∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC.又∵OE=OF,∴四边形DECF是平行四边形.∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG,∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.【点睛】本题主要考查平行线的性质及矩形的判定,证得OE=OF,得出四边形DECF是平行四边形是解题的关键,注意角平分线的应用.23、(1)CF=3;(2).【分析】(1)由正方形的性质可得AB=BC=AD=CD=2,根据勾股定理可求AO=5,即AE=3,由旋转的性质可得DE=DF,∠EDF=90°,根据“SAS”可证△ADE≌△CDF,可得AE=CF=3;(2)由△ADE≌△CDF,可得S△ADE=S△CDF,当OE⊥AD时,S△ADE的值最小,即可求△CDF的面积的最小值.【详解】(1)由旋转得:,,∵是边的中点,∴,在中,,∴,∵四边形是正方形,∴,,∴,即,∴,在和中,∴,∴;(2)由于,所以点可以看作是以为圆心,2为半径的半圆上运动,过点作于点,∵,∴,当,,三点共线,最小,,∴.【点睛】本题考查了旋转的性质,正方形的性质,勾股定理,全等三角形的判定和性质等知识,证明△ADE≌△CDF是本题的关键.24、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价×销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值.(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案.【详解】解:(1)当时,设直线的表达式为将代入到表达式中得解得∴当时,直线的表达式为∴y=,(2)由已知得:w=py.当1≤x≤5时,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,当x=3时,w取最大值2880,当5<x≤9时,w=10(20x+180)=200x+1800,∵x是整数,200>0,∴当5<x≤9时,w随x的增大而增大,∴当x=9时,w有最大值为200×9+1800=1,当9<x≤15时,w=10(-60x+900)=-600x+9000,∵-600<0,∴w随x的增大而减小,又∵x=9时,w=-600×9+9000=1.∴当9<x≤15时,W的最大值小于1综合得:w=,在这15天中,第9天销售额达到最大,最大销售额是1元.(3)当时,当时,y有最小值,最小值为∴不会有亏损当时,当时,y有最小值,最小值为∴不会有亏损当时,解得∵x为正整数∴∴第13天、第14天、第15天这3天,专柜处于亏损状态.【点睛】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键.25、(1)相等;(2)或;(3)1.【分析】(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理考试内容理解试题及答案
- 项目管理资格认证考试回顾试题及答案
- 2024年项目管理专业人士资格考试预测试题及答案
- 2025年会计岗位职责试题及答案
- 洗煤厂粉尘治理施工方案
- 微生物检验技师的基本知识试题及答案
- 财务政策对公司战略的影响试题及答案
- 水泥土换填施工方案批复
- 管道工程测量与定位考核试卷
- 2024年项目管理能力评估试题及答案
- 铁粉运输合同协议
- 广东省珠海市2024-2025学年七年级下学期期中考试英语试题(无答案)
- 2024年中国南水北调集团水网发展研究有限公司招聘考试真题
- (四调)武汉市2025届高中毕业生四月调研考试 语文试卷(含答案详解)
- 2025年融媒体中心招聘考试笔试试题(60题)附答案
- 公司事故隐患内部报告奖励制度
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- GIS组合电器课件
- 村田数控冲床安装步骤_图文
- 语法填空题教案
- 白油安全技术说明书(共2页)
评论
0/150
提交评论