版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市局属四校2025届九上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或92.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件 B.随机事件 C.确定事件 D.不可能事件3.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数4.如图,是的弦,半径于点,且的长是()A. B. C. D.5.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根6.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°7.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分8.如图,舞台纵深为6米,要想获得最佳音响效果,主持人应站在舞台纵深所在线段的离舞台前沿较近的黄金分割点处,那么主持人站立的位置离舞台前沿较近的距离约为()A.1.1米 B.1.5米 C.1.9米 D.2.3米9.在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则mn的值是()A.﹣2 B.﹣1 C.0 D.210.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.11.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=012.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度忽略不计),若桌面的面积是1.2m²,则地面上的阴影面积是()A.0.9m² B.1.8m² C.2.7m² D.3.6m²二、填空题(每题4分,共24分)13.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).14.关于x的一元二次方程有一根为0,则m的值为______15.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).16.分解因式:x3y﹣xy3=_____.17.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.18.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.三、解答题(共78分)19.(8分)如图,已知是的直径,点是延长线上一点过点作的切线,切点为.过点作于点,延长交于点.连结,,,.若,.(1)求的长。(2)求证:是的切线.(3)试判断四边形的形状,并求出四边形的面积.20.(8分)如图,在平行四边形中,为边上一点,平分,连接,已知,.求的长;求平行四边形的面积;求.21.(8分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.22.(10分)已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.23.(10分)已知是⊙的直径,为等腰三角形,且为底边,请仅用无刻度的直尺完成下列作图.(1)在图①中,点在圆上,画出正方形;(2)在图②中,画菱形.24.(10分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?25.(12分)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.26.如图,已知抛物线经过、两点,与轴相交于点.(1)求抛物线的解析式;(2)点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值;(3)点为抛物线上一点,若,求出此时点的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.2、B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.4、C【分析】利用勾股定理和垂径定理即可求解.【详解】∵,∴AD=4cm在Rt△AOD中,OA2=OD2+AD2,∴25=(5−DC)2+16,∴DC=2cm.故选:C.【点睛】主要考查了垂径定理的运用.垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.5、A【分析】计算判别式即可得到答案.【详解】∵=∴方程有两个不相等的实数根,故选:A.【点睛】此题考查一元二次方程根的情况,正确掌握判别式的三种情况即可正确解题.6、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.7、A【详解】这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.8、D【分析】根据黄金分割点的比例,求出距离即可.【详解】∵黄金分割点的比例为(米)∴主持人站立的位置离舞台前沿较近的距离约为(米)故答案为:D.【点睛】本题考查了黄金分割点的实际应用,掌握黄金分割点的比例是解题的关键.9、A【分析】已知在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则P和Q两点横坐标互为相反数,纵坐标互为相反数即可求得m,n,进而求得mn的值.【详解】∵点P(m,1)与点Q(﹣2,n)关于原点对称∴m=2,n=-1∴mn=-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数.10、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11、C【详解】试题分析:可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式列方程可得=1.故选C.考点:由实际问题抽象出一元二次方程.12、C【分析】根据桌面与地面阴影是相似图形,再根据相似图形的性质即可得到结论.【详解】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴这样地面上阴影部分的面积为故选C.【点睛】本题考查了相似三角形的应用,根据相似图形的面积比等于相似比的平方,同时考查相似图形的对应高之比等于相似比,掌握以上知识是解题的关键.二、填空题(每题4分,共24分)13、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.
∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,
∴c<0.∴abc<0.故答案为<.【点睛】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.14、m=-1【解析】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,然后根据一元二次方程的定义确定m的值.【详解】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,
而m-1≠0,
所以m的值为-1.
故答案是:-1.【点睛】考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.15、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题.【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:.【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.16、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.详解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、(4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标.【详解】∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为:(4,).【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.18、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件为:∠B=∠P
∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.三、解答题(共78分)19、(1)BD=2;(2)见解析;(3)四边形ABCD是菱形,理由见解析.菱形ABCD得面积为6.【分析】(1)根据题意连结BD,利用切线定理以及勾股定理进行分析求值;(2)根据题意连结OB,利用垂直平分线性质以及切线定理进行分析求值;(3)由题意可知四边形ABCD是菱形,结合勾股定理利用菱形的判定方法进行求证.【详解】解:(1)连结BDDE=CE∴∠DCE=∠EDC∵⊙O与CD相切于点D,∴OD⊥DC,∠ODC=90°∠ODE+∠CDE=90°∠DOC+∠DCO=90°,∠DCE=∠EDC∠ODE=∠DOEDE=OE∵在⊙O中,OE=ODOE=OD=DE∠DOE=60°∵在⊙O中,AE⊥DBBD=2DF∵在Rt△COE中,∠ODF-90°-∠DOE=90°-60°=30°∴OD=2OF∵EF=1,设半径为R,OF=OE-FE=R-1∴R=2(R-1),解得R=2∴BD=2DF=2(2)连结OB∵在⊙O中,AE⊥DBBF=DFAC是DB的垂直平分线∴OD=0B,CD=CB∴∠ODB=∠OBD,∠CDB=∠CBD∴∠ODB+∠CDB=∠OBD+∠CBD即∠ODC=∠OBC由(1)得∠ODC=90°∴∠OBC=90°即OB⊥BC又OB是⊙O的半径∴CB是⊙O的切线(3)四边形ABCD是菱形,理由如下∵由(1)得在⊙O中,∠DOE=60°,∠ODC=90°∴∠DAO=∠DOE=30°∵由(1)得∠ODC=90°∴∠OCD=90°-∠DOC=90°-60°=30°∴∠DAO=∠OCD∴DA=CD∵由(2)得AD=AB,CD=BC∴AD=DC=BC=AB∴四边形ABCD是菱形∵在Rt△AFD中,DF=,∠DAC=30°∴AD=2DF=2∵四边形ABCD是菱形∴AC=2AF=6,BD=2DF=2∴菱形ABCD得面积为:×AC×DB=×6×2=6.【点睛】本题考查切线的性质、等边三角形的判定和性质、菱形的判定和性质以及解直角三角形,熟练掌握并综合利用其进行分析是解题关键.20、(1)10;(2)128;(3)【分析】(1)先根据平行四边形的性质和角平分线的性质求得,然后根据等角对等边即可解答;(2)先求出CD=10,再根据勾股定理逆定理可得,即可说明CE是平行四边形的高,最后求面积即可;(3)先求出BC的长,再根据勾股定理求出BE的长,最后利用余弦的定义解答即可.【详解】解:四边形是平行四边形又平分四边形是平行四边形.在中,.四边形是平行四边形且中,【点睛】本题考查了平行四边形、勾股定理以及锐角的三角函数等知识,其中掌握平行四边形的性质是解答本题的关键.21、(1)(2)水流喷出的最大高度为2米【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函数表达式为y=.(2)解:∴当x=1时,y取得最大值,此时y=2.答:水流喷出的最大高度为2米.【点睛】本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.22、(1)证明见解析;(2)k≥.【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;
(2)把(0,-2)带入平移后的解析式,利用配方法得到k=(m+)²+,即可得出结果.【详解】(1)证:当y=0时x2-2mx+m2+m-1=0∵b2-4ac=(-2m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x2-2mx+m2+m-1=0有两个不相等的实数根∴二次函数y=x2-2mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为:y=x2-2mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k,∴k=m²+m+1=(m+)²+,∴k≥.【点睛】本题考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.23、(1)详见解析;(2)详见解析.【分析】(1)过点A作圆的直径与圆的交点即为点D;
(2)过AB、AC与圆的交点作圆的直径,与圆相交于两点,再以点B、C为端点、过所得两点作射线,交点即为点D.【详解】(1)如图①,正方形即为所求(2)如图②,菱形即为所求【点睛】本题主要考查作图-复杂作图,熟练掌握圆周角定理、等腰三角形的性质及菱形的判定与性质是解题的关键.24、(1)20;(2)26,980.【分析】(1)设该商品的标价为x元,根据按标价的八折销售该商品50件比按标价销售该商品50件所获得的利润少200元,列方程求解;(2)设该商品每天的销售利润为y元,销售价格定为每件x元,列出y关于x的函数解析式,求出顶点坐标即可得解.【详解】解:设该商品的标价为a元,由题意可得:,解得:;答:该商品的标价为20元;设该商品每天的销售利润为y元,销售价格定为每件x元,由题意可得:;,所以销售单价为26元时,商品的销售利润最大,最大利润
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4.1流域内协调发展+课件高二年级+地理+人教版(2019)选择性必修二
- 北京人朝初一往年分班考数学试题及答案
- 湖北省咸宁市2023-2024学年高一下学期期末考试语文试卷
- 工程项目编码规范(制度版)
- 第12章简单机械(B卷能力提升练)(原卷版)-2022-2023学年八年级物理下册分层训练AB卷(人教版)
- 2.1 流水地貌 课件高一上学期 地理 湘教版(2019)必修一
- 演讲与口才实训(第三版)
- 三年级生命安全教育教案,科学课上不乱动
- 住宅装修照明设计合同
- 婚纱店装修施工合同
- 预防患者自杀应急预案课件
- 包装方案设计
- 白银集团公司招聘笔试题目
- 护理实训室文化墙建设方案
- 《放射防护知识培训》课件
- 《国际贸易实务》课件
- 16号线01标起点-北安河站工程施工组织设计
- 小饰品店计划书
- 十大词类和八种句子成分串讲学案高一英语初高衔接课程
- GB/T 10739-2023纸、纸板和纸浆试样处理和试验的标准大气条件
- 康复治疗行业发展趋势
评论
0/150
提交评论