2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题含解析_第1页
2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题含解析_第2页
2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题含解析_第3页
2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题含解析_第4页
2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省安庆望江县联考九上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶32.函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是(

)A. B. C. D.3.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.24.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.5.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.6.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>08.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+59.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.10.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交二、填空题(每小题3分,共24分)11.在中,,,,则的长是__________.12.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.13.已知,如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=______cm.14.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.15.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC=__.16.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)17.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.18.如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b),使△PAB为等边三角形,则2(a-b)=___________.三、解答题(共66分)19.(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.20.(6分)某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点到的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.求边界所在抛物线的解析式;如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.21.(6分)先化简,再求值:,其中a=2.22.(8分)某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求W与x的函数关系式(不必写出x的取值范围)(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?23.(8分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?24.(8分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.25.(10分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,,连接.(1)求反比例函数与一次函数的解析式;(2)求的面积.26.(10分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.2、B【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致,由此即可解答.【详解】由解析式y=-kx2+k可得:抛物线对称轴x=0;选项A,由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,选项A错误;选项B,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,选项B正确;选项C,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项C错误;选项D,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项D错误.故选B.【点睛】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.4、C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.6、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.9、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.10、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.二、填空题(每小题3分,共24分)11、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.12、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0=a(x+2)2+8,则a=−2,即:B点横坐标取最小值时,抛物线的解析式为:y=-2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2(x−8)2+2,令y=0,解得x1=7,x2=9∴点A的横坐标的最大值为7.故答案为7.【点睛】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.13、3.【分析】首先根据平行四边形的性质,得出AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC,又由BF是∠ABC的角平分线,可得∠ABF=∠CBF,∠BFC=∠CBF,进而得出CF=BC,即可得出DF.【详解】,解:∵在□ABCD中,AB=4cm,AD=7cm,∴AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC又∵BF是∠ABC的角平分线∴∠ABF=∠CBF∴∠BFC=∠CBF∴CF=BC=7cm∴DF=CF-CD=7-4=3cm,故答案为3.【点睛】此题主要利用平行四边形的性质,熟练运用即可解题.14、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可.【详解】由题意知:抛物线的顶点坐标是(0,1).∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是.故答案为.【点睛】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键.15、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【详解】∵AB是⊙O的直径,

∴∠ACB=90°,

又∵∠OBC=60°,

∴∠BAC=180°-∠ACB-∠ABC=30°.

故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.16、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.17、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.18、【分析】根据A、B坐标求出直线AB的解析式后,求得AB中点M的坐标,连接PM,在等边△PAB中,M为AB中点,所以PM⊥AB,,再求出直线PM的解析式,求出点P坐标;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,将a代入直线PM的解析式中求出b的值,最后计算2(a-b)的值即可;【详解】解:∵A(4,0),B(0,3),∴AB=5,设,∴,∴,∴,∵A(4,0)B(0,3),∴AB中点,连接PM,在等边△PAB中,M为AB中点,∴PM⊥AB,,∴,∴设直线PM的解析式为,∴,∴,∴,∴,在Rt△PAM中,AP=AB=5,∴,∴,∴,∴,∵a>0,∴,∴,∴;【点睛】本题主要考查了一次函数的综合应用,掌握一次函数是解题的关键.三、解答题(共66分)19、(1)、证明过程见解析;(2)、【解析】试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.试题解析:(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的长是.考点:相似三角形的判定与性质.20、(1)();(2)点与点重合,取最大值.【分析】(1)首先由题意得出,然后代入抛物线解析式,即可得解;(2)首先设点的坐标为,矩形的周长为,然后根据坐标与周长构建二次函数,即可求的最大值.【详解】由题意得,,且为抛物线的顶点,则设抛物线的解析式为,代入得:,解得所以边界所在抛物线的解析式是()设点的坐标为,矩形的周长为.则,,矩形的周长,化简得,当时,取最大值.此时点与点重合.【点睛】此题主要考查抛物线的性质以及最值问题,熟练掌握,即可解题.21、,2【分析】先根据分式的运算顺序和运算法则化简原式,再将a=2代入计算即可;【详解】解:原式=;当a=2时,原式值=;【点睛】本题主要考查了分式的化简求值,掌握分式的运算顺序和运算法则是解题的关键.22、(1)y=30+5x(2)W=﹣5x2+20x+1;(3)降价4元(x不低于4元)时,销售这种商品每天获得的利润最大为1元【分析】(1)根据销售量等于原销售量加上多卖出的量即可求解;(2)根据每天获得利润等于单件利润乘以销售量即可求解;(3)根据二次函数的性质即可求解.【详解】解:(1)根据题意,得y=30+5x.答:y与x的函数关系式y=30+5x.(2)根据题意,得W=(20﹣10﹣x)(30+5x)=﹣5x2+20x+1.答:W与x的函数关系式为W=﹣5x2+20x+1.(3)W=﹣5x2+20x+1=﹣5(x﹣2)2+320∵﹣5<0,对称轴x=2,∵x不低于4元即x≥4,在对称轴右侧,W随x的增大而减小,∴x=4时,W有最大值为1,答:降价4元(x不低于4元)时,销售这种商品每天获得的利润最大为1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.23、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是小军获胜的概率是,所以这个游戏不公平.【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)150°;(2)详见解析;(3)15°【分析】(1)根据旋转的性质,利用补角性质即可解题;(2)根据旋转后的对应边相等即可解题;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论