吉林省宁江区一中学2024届中考五模数学试题含解析_第1页
吉林省宁江区一中学2024届中考五模数学试题含解析_第2页
吉林省宁江区一中学2024届中考五模数学试题含解析_第3页
吉林省宁江区一中学2024届中考五模数学试题含解析_第4页
吉林省宁江区一中学2024届中考五模数学试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省宁江区一中学2024届中考五模数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是42.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足().A. B. C. D.4.下列几何体中,俯视图为三角形的是()A. B. C. D.5.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤6.下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a67.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是(

)A.1 B.2 C.3 D.48.如图,正比例函数y=x与反比例函数y=4x的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>29.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)10.下列计算,正确的是()A. B.C.3 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx(k为常数,k≠0)的图像上,正方形ADEF的面积为4,且BF=2AF,则12.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.13.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是

____

.14.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.15.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.16.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.三、解答题(共8题,共72分)17.(8分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.18.(8分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.19.(8分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.(1)直接写出点A的坐标;(2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.①当∠BAC=90°时.求抛物线G2的表达式;②若60°<∠BAC<120°,直接写出m的取值范围.20.(8分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.21.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.22.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).23.(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.24.如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法2、C【解析】

根据轴对称图形与中心对称图形的概念判断即可.【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、D【解析】

根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.4、C【解析】

俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.5、D【解析】

①首先利用已知条件根据边角边可以证明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;

③利用全等三角形的性质和对顶角相等即可判定③说法正确;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;

⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;

由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,

所以∠BEP=90°,

过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是错误的;

因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;

连接BD,则S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.6、D【解析】各项计算得到结果,即可作出判断.解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=﹣a6,符合题意,故选D7、C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8、D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=4考点:1.反比例函数与一次函数的交点问题;2.数形结合思想的应用.9、D【解析】

设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A、A′关于点C对称,

设点A的坐标是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴点A的坐标是(-a,-b-2).

故选D.【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键10、B【解析】

根据二次根式的加减法则,以及二次根式的性质逐项判断即可.【详解】解:∵=2,∴选项A不正确;∵=2,∴选项B正确;∵3﹣=2,∴选项C不正确;∵+=3≠,∴选项D不正确.故选B.【点睛】本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.12、【解析】

设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.【详解】设羊价为x钱,根据题意可得方程:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.13、【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:,故答案为.【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.14、【解析】

首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【详解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.16、1【解析】

题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.三、解答题(共8题,共72分)17、(1)图形见解析,216件;(2)【解析】

(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;

(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品×36=324件.

条形图如图所示,

(2)男生有3名,分别记为A1,A2,A3,女生记为B,

列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.

所以选取的两名学生恰好是一男一女的概率为.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.18、55米【解析】

由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB为55米.【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.19、(1)(,2);(2)①y=(x-)2+2;②【解析】

(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【详解】(1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,∴抛物线G2:y=m(x-)2+2,∵点A是抛物线G2的顶点.∴点A的坐标为(,2).(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD=,∴点C的坐标为(2,).∵点C在抛物线G2上,∴=m(2-)2+2,解得:.②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C的坐标为(+1,);当∠BAC=120°时,点C的坐标为(+3,).∵60°<∠BAC<120°,∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,∴,解得:.【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.20、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】

(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算.【详解】(1)如图所示:A1(﹣1,﹣2),B1(2,﹣1);(2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:线段OB扫过的面积为:【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.21、(1)见解析;(2).【解析】

(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切线,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:连接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴.∴.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A点右边,∵折叠∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论