




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京秦淮区南航附中2025届九上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果反比例函数y=kx的图像经过点(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限2.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于()A.4 B.5 C.5.5 D.63.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为()A. B. C. D.4.二次函数的图象如右图所示,若,,则()A., B., C., D.,5.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.216.如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.2 B.3 C.2 D.37.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23° B.70° C.77° D.80°8.抛物线y=(x-3)2+4的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)9.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米 B.800tanα米 C.米 D.米10.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)11.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.3212.如图,是圆的直径,直线与圆相切于点,交圆于点,连接.若,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,矩形的两边在其坐标轴上,以轴上的某一点为位似中心作矩形,使它与矩形位似,且点,的坐标分别为,,则点的坐标为__________.14.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.15.计算:×=______.16.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.17.已知关于x的方程x2+3x+m=0有一个根为﹣2,则m=_____,另一个根为_____.18.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.三、解答题(共78分)19.(8分)随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡的坡角为,水平线.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到,参考数据:,,).20.(8分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式21.(8分)某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每降价10元,则每天可多售出50双.设每双降价x元,每天总获利y元.(1)如果降价40元,每天总获利多少元呢?(2)每双售价为多少元时,每天的总获利最大?最大获利是多少?22.(10分)如图,一次函数的图象与反比例函数的图象交于点两点,其中点,与轴交于点.求一次函数和反比例函数的表达式;求点坐标;根据图象,直接写出不等式的解集.23.(10分)请回答下列问题.(1)计算:(2)解方程:24.(10分)(1)计算:;(2)解方程:.25.(12分)计算:|﹣1|+2sin30°﹣(π﹣3.14)0+()﹣126.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
参考答案一、选择题(每题4分,共48分)1、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限.【详解】∵反比例函数y=kx的图象经过点(-3,-4∴k=-3×(-4)=12,∵12>0,∴该函数图象位于第一、三象限,故选:B.【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值.2、D【分析】由两个中点连线得到DE是中位线,根据DE的长度即可得到AB的长度.【详解】∵点D是BC的中点,点E是AC的中点,∴DE是△ABC的中位线,∴AB=2DE=6,故选:D.【点睛】此题考查三角形的中位线定理,三角形两边中点的连线是三角形的中位线,平行于三角形的第三边,且等于第三边的一半.3、C【分析】根据题意列出树状图,得到所有a、c的组合再找到满足的数对即可.【详解】如图:符合的共有6种情况,而a、c的组合共有12种,故这两人有“心灵感应”的概率为.故选:C.【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.4、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,
∴25a-20a+4c>0,即5a+4c>0,
∴M>0,
∵当x=1时,y=a+b+c>0,
∴N>0,
故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.5、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.6、B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.7、C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】本题主要考查平行线的性质,三角形的内角和定理,掌握平行线的性质是解题的关键.8、D【解析】根据抛物线解析式y=(x-3)2+4,可直接写出顶点坐标.【详解】y=(x-3)2+4的顶点坐标是(3,4).故选D.【点睛】此题考查了二次函数y=a(x-h)2+k的性质,对于二次函数y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=k.9、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.10、D【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.考点:二次函数的性质.11、D【解析】设AC=x,四边形ABCD面积为S,则BD=16-x,
则:S=AC•BD=x(16-x)=-(x-8)2+32,
当x=8时,S最大=32;
所以AC=BD=8时,四边形ABCD的面积最大,
故选D.【点睛】二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.12、B【分析】根据切线的性质可得:∠BAP=90°,然后根据三角形的内角和定理即可求出∠AOC,最后根据圆周角定理即可求出.【详解】解:∵直线与圆相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故选B.【点睛】此题考查的是切线的性质和圆周角定理,掌握切线的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.【详解】连接BF交轴于P,如图所示:∵矩形和矩形,点,的坐标分别为,,∴点C的坐标为∵BC∥GF∴∴GP=1,PC=2,OP=3∴点P即为其位似中心∴OD=6∴点D坐标为故答案为:.【点睛】此题主要考查位似图形的性质,熟练掌握,即可解题.14、k≤且k≠﹣1【解析】因为一元二次方程有实数根,所以△≥2且k+1≠2,得关于k的不等式,求解即可.【详解】∵关于x的一元二次方程(k+1)x1﹣3x+1=2有实数根,∴△≥2且k+1≠2,即(﹣3)1﹣4(k+1)×1≥2且k+1≠2,整理得:﹣4k≥﹣1且k+1≠2,∴k且k≠﹣1.故答案为k且k≠﹣1.【点睛】本题考查了一元二次方程根的判别式.解决本题的关键是能正确计算根的判别式.本题易忽略二次项系数不为2.15、1.【解析】×==1,故答案为1.16、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、2x=﹣1【分析】将x=﹣2代入方程即可求出m的值,然后根据根与系数的关系即可取出另外一个根.【详解】解:将x=﹣2代入x2+3x+m=0,∴4﹣6+m=0,∴m=2,设另外一个根为x,∴﹣2+x=﹣3,∴x=﹣1,故答案为:2,x=﹣1【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.18、(47,)【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【详解】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sim60°.OC1=,横坐标为cos60°.OC1=,∴C1,∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…∴C2的纵坐标为:sin60°A1C2=,代入y求得横坐标为2,∴C2(2,),∴C3的纵坐标为:sin60°A2C3=,代入y求得横坐标为5,∴C3(5,),∴C4(11,),C5(23,),∴C6(47,);故答案为(47,).【点睛】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.三、解答题(共78分)19、2.6米.【分析】根据锐角三角函数关系得出CF以及DF的长,进而得出DE的长即可得出答案.【详解】过点D作DE⊥AB于点E,延长CD交AB于点F.在△ACF中,∠ACF=90°,∠CAF=20°,AC=12,
∴,∴(m),∴(m),在△DFE中,,
又∵DE⊥AB,
∴,
∴,∴(m),答:地下停车库坡道入口限制高度约为2.6m.【点睛】本题考查了解直角三角形的应用,主要是余弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.20、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47【点睛】此题考查的是二次函数的图像及性质,掌握用二次函数的顶点式求最值、二次函数的增减性和二次函数的平移规律是解决此题的关键.21、(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.【分析】(1)根据题意即可列式求解;(2)根据题意,得y=(400+5x)(300-x-100),根据二次函数的图像与性质即可求解.【详解】(1)根据题意知:每降价1元,则每天可多售出5双,∴(400+5×40)×(300-40-100)=600×160=96000(元)答:如果降价40元,每天总获利96000元.(2)根据题意,得y=(400+5x)(300-x-100)=-5x2+600x+80000=-5(x—60)2+98000∵a=-5,开口向下,y有最大值,∴当x=60时,即当售价为300—60=240元时,y有最大值=98000元答:每双售价为240元时,每天的总获利最大,最大获利是98000元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意写出函数关系式.22、(1)y=-x-2,y=-,(2)C(1,-3),(3)-3<x<0或x>1.【分析】(1)将点B的坐标代入一次函数中即可求出一次函数的表达式,进而求出A点坐标,然后再将A点坐标代入反比例函数中即可求出反比例函数的表达式;(2)将一次函数与反比例函数联立即可求出C点坐标;(3)根据两交点坐标及图象即可得出答案.【详解】解:(1)由点B(-2,0)在一次函数y=-x+b上,得b=-2,∴一次函数的表达式为y=-x-2,由点A(-3,m)在y=-x-2上,得m=1,∴A(-3,1),把A(-3,1)代入数y=(x<0)得k=-3,∴反比例函数的表达式为:y=-,(2)解得或∴C(1,-3)(3)当时,反比例函数的图象在一次函数图象的上方,根据图象可知此时-3<x<0或x>1.∴不等式的解集为-3<x<0或x>1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业机密协议劳动合同模板
- 宝钢钳工试题题库及答案
- 水浒心理测试题目及答案
- 2025后勤人员用工合同模板
- 中级社会工作者考试值得关注的技能提升点试题及答案
- 2025财产信托合同范文
- 社会工作的历史背景考查试题及答案
- 替他人签署合同协议书
- 莆田辅警面试题型及答案
- 兽医传染病考试题及答案
- 中职数字媒体类专业《美术基础》课程标准
- 检验与临床沟通的主要内容
- 汛期应急知识培训
- 五年级数学下册、操作练习题(部编版)
- 《永乐大帝朱棣》课件
- 毽球运动在校园文化中的推广计划
- 2024年08月中国国新基金管理有限公司招考笔试历年参考题库附带答案详解
- 现金支票样(标准-附图片)
- 2025新外研社版英语七年级下单词默写表
- 商业中介佣金支付保障协议(2024年版)
- 景区服务标准化培训
评论
0/150
提交评论