2022-2023学年浙江省杭州市江干区数学九年级第一学期期末经典试题含解析_第1页
2022-2023学年浙江省杭州市江干区数学九年级第一学期期末经典试题含解析_第2页
2022-2023学年浙江省杭州市江干区数学九年级第一学期期末经典试题含解析_第3页
2022-2023学年浙江省杭州市江干区数学九年级第一学期期末经典试题含解析_第4页
2022-2023学年浙江省杭州市江干区数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.2.解方程最适当的方法是()A.直接开平方法 B.配方法 C.因式分解法 D.公式法3.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.4.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.20085.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.56.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为().A. B. C. D.7.在同一坐标系内,一次函数与二次函数的图象可能是A. B. C. D.8.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm9.如图,在中,,为上一点,,点从点出发,沿方向以的速度匀速运动,同时点由点出发,沿方向以的速度匀速运动,设运动时间为,连接交于点,若,则的值为()A.1 B.2 C.3 D.410.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.11.如图,在的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰2个白色小正方形(每个白色小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A. B. C. D.12.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°二、填空题(每题4分,共24分)13.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为_____.14.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.16.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.17.一元二次方程x(x﹣3)=3﹣x的根是____.18.设,,是抛物线上的三点,则,,的大小关系为__________.三、解答题(共78分)19.(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.20.(8分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)要使商场平均每天盈利1600元,可能吗?请说明理由.21.(8分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).22.(10分)某日王老师佩戴运动手环进行快走锻炼两次锻炼后数据如下表,与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的倍.设王老师第二次锻炼时平均步长减少的百分率为.注:步数平均步长距离.项目第一次锻炼第二次锻炼步数(步)①_______平均步长(米/步)②_______距离(米)(1)根据题意完成表格;(2)求.23.(10分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=3,NP=,求NQ的长.24.(10分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.25.(12分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,,,点为上一点,且满足,为上一点,,延长交于,求的值.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值.”……老师:“把原题条件中的‘’,改为‘’其他条件不变(如图2),也可以求出的值.(1)在图1中,①求证:;②求出的值;(2)如图2,若,直接写出的值(用含的代数式表示).26.如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)

参考答案一、选择题(每题4分,共48分)1、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;

∵Rt△ABC中,∠ACB=90°,CD⊥AB,

∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;

故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.2、C【分析】根据解一元二次方程的方法进行判断.【详解】解:先移项得到,然后利用因式分解法解方程.故选:C.【点睛】本题考查了解一元二次方程——因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.4、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.6、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解①得,,解②得,.∴.∵的值是不等式组的解,∴.方程,解得,.∵不是方程的解,∴或.∴满足条件的的值为,(个).∴概率为.故选.7、C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.8、C【详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.9、B【分析】过点C作CH∥AB交DE的延长线于点H,则DF=10-2-t=8-t,证明△DFG∽△HCG,可求出CH,再证明△ADE∽△CHE,由比例线段可求出t的值.【详解】解:过点C作CH∥AB交DE的延长线于点H,则BD=t,AE=2t,DF=10-2-t=8-t,

∵DF∥CH,

∴△DFG∽△HCG,∴,∴CH=2DF=16-2t,

同理△ADE∽△CHE,∴,∴,解得t=2,t=(舍去).故选:B.【点睛】本题主要考查相似三角形的判定与性质以及等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.10、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.11、C【分析】根据题目意思我们可以得出总共有15种可能,而能构成轴对称图形的可能有4种,然后根据概率公式可计算出新构成的黑色部分的图形是轴对称图形的概率.【详解】解:如图所示可以涂成黑色的组合有:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;一共有15种可能构成黑色部分的图形是轴对称图形的:1,4;3,6;2,3;4,5;∴构成黑色部分的图形是轴对称图形的概率:故选:C.【点睛】此题主要考查的是利用轴对称设计图案,正确得出所有组合是解题的关键.12、C【详解】∵AB是⊙O的切线,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故选C.二、填空题(每题4分,共24分)13、(0,﹣5)【分析】要求抛物线与y轴的交点,即令x=0,解方程.【详解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与轴的交点坐标,正确掌握令或令是解题的关键.14、.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据,得出CG与DE的倍数关系,并根据进行计算即可.【详解】延长EF和BC交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E∴∴∴直角三角形ABE中,又∵∠BED的角平分线EF与DC交于点F∴∵∴∴∴由,,可得∴设,,则∴∴解得∴故答案为:.【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.15、26°【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【详解】连接OD,如图,

∵CD与⊙O相切于点D,

∴OD⊥CD,

∴∠ODC=90°,

∴∠ODA=∠CDA-90°=122°-90°=32°,

∵OA=OD,

∴∠A=∠ODA=32°,

∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.

故答案为:.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.16、1【解析】根据已知得出阴影部分即为平行四边形的面积.【详解】解:根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=1.

故答案是:1.【点睛】本题考查了二次函数图象与几何变换.解题关键是把阴影部分的面积整理为规则图形的面积.17、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.18、【分析】根据点A、B、C的横坐标利用二次函数图象上点的坐标特征即可求出y1、y2、y3的值,比较后即可得出结论.【详解】∵,,是抛物线y=−(x+1)2+1上的三点,∴y1=0,y2=−3,y3=−8,∵0>−3>−8,∴.故答案为:.【点睛】本题考查了二次函数图象上点的坐标特征,根据点的坐标利用二次函数图象上点的坐标特征求出纵坐标是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.20、(1)每件衬衫应降价1元.(2)不可能,理由见解析【分析】(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.

(2)同样列出方程,若方程有实数根则可以,否则不可以.【详解】(1)设每件衬衫应降价x元.

根据题意,得(40-x)(1+2x)=110

整理,得x2-30x+10=0

解得x1=10,x2=1.

∵“扩大销售量,减少库存”,

∴x1=10应略去,

∴x=1.

答:每件衬衫应降价1元.

(2)不可能.理由如下:

令y=(40-x)(1+2x),当y=1600时,(40-x)(1+2x)=1600整理得x2-30x+400=0

∵△=900-4×400<0,方程无实数根.

∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.21、(1)见解析,(2)见解析,(3)π【解析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为π.【点睛】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.22、(1)①,②;(2)的值为.【分析】(1)①直接利用王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍,得出第二次锻炼的步数;②利用王老师第二次锻炼时平均步长减少的百分率为x,即可表示出第二次锻炼的平均步长(米/步);(2)根据题意第二次锻炼的总距离这一等量关系,建立方程求解进而得出答案.【详解】解:(1)①根据题意可得第二次锻炼步数为:,②第二次锻炼的平均步长(米/步)为:;(2)由题意,得.解得(舍去),.答:的值为.【点睛】本题主要考查一元二次方程的应用,根据题意正确表示出第二次锻炼的步数与步长是解题关键.23、(1)见解析;(2).【分析】(1)连接OP,则OP⊥PQ,然后证明OP//NQ即可.(2)连接MP,在Rt△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,然后在Rt△PNQ中利用三角函数即可求解.【详解】(1)证明:连接OP,∵直线PQ与⊙O相切于P点,∴OP⊥PQ,即∠OPQ=90°,∵OP=ON,∴∠OPN=∠ONP.又∵NP平分∠MNQ,∴∠OPN=∠PNQ.∴OP//NQ.∴∠NQP=180°-∠OPQ=90°,∴NQ⊥PQ.(2)连接MP,∵MN是直径,∴∠MPN=90°.∴,∴∠MNP=30°.∴∠PNQ=30°.∴在Rt△PNQ中,NQ=NP•cos30°=.【点睛】本题考查了切线的性质,解直角三角形,正确添加辅助线,灵活运用相关知识是解题的关键.24、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;

(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD中,∠A=∠D=90°,

∴∠1+∠2=90°,

∵EF⊥BE,

∴∠2+∠3=180°-90°=90°,

∴∠1=∠3,

又∵∠A=∠D=90°,

∴△ABE∽△DEF;

(2)∵AB=3,AE=4,

∴BE==5,

∵AD=6,AE=4,

∴DE=AD-AE=6-4=2,

∵△ABE∽△DEF,

∴,即,

解得EF=.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.25、(1)①证明见解析;②;(2)【分析】(1)①根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;②过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论