四川省泸州市2024年中考数学试卷(含答案)_第1页
四川省泸州市2024年中考数学试卷(含答案)_第2页
四川省泸州市2024年中考数学试卷(含答案)_第3页
四川省泸州市2024年中考数学试卷(含答案)_第4页
四川省泸州市2024年中考数学试卷(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市2024年中考数学试卷阅卷人一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).得分1.下列各数中,无理数是()A.−13 B.3.14 C.0 2.第二十届中国国际酒业博览会于2024年3月21-24日在泸州市国际会展中心举办,各种活动带动消费2.6亿元,将数据260000000用科学记数法表示为()A.2.6×107 B.2.6×13.下列几何体中,其三视图的主视图和左视图都为矩形的是()A. B. C. D.4.把一块含30°角的直角三角板按如图方式放置于两条平行线间,若∠1=45°,则∠2=() A.10° B.15° C.20° D.30°5.下列运算正确的是()A.3a+2a3=5a4 B.3a2⋅26.已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90° B.∠B=∠C C.AC=BD D.AC⊥BD7.分式方程1x−2A.x=−73 B.x=−1 C.x=58.已知关于x的一元二次方程x2+2x+1−k=0无实数根,则函数y=kx与函数A.0 B.1 C.2 D.39.如图,EA,ED是⊙O的切线,切点为A,D,点B,C在⊙O上,若∠BAE+∠BCD=236°,则∠E=() A.56° B.60° C.68° D.70°10.宽与长的比是5−12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD沿对角线AC翻折,点B落在点B'处,AB'交CDA.55 B.12 C.35 第10题图 第12题图11.已知二次函数y=ax2+(2a−3)x+a−1(xA.1≤a<98 B.0<a<32 C.12.如图,在边长为6的正方形ABCD中,点E,F分别是边AB,BC上的动点,且满足AE=BF,AF与DE交于点O,点M是DF的中点,G是边AB上的点,AG=2GB,则OM+1A.4 B.5 C.8 D.10阅卷人二、填空题(本大题共4小题,每小题3分,共12分).得分13.函数y=x+2的自变量x的取值范围是14.在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是23,则黄球的个数为15.已知x1,x2是一元二次方程x2−3x−5=0的两个实数根,则16.定义:在平面直角坐标系中,将一个图形先向上平移a(a>0)个单位,再绕原点按逆时针方向旋转θ角度,这样的图形运动叫做图形的ρ(a,θ)变换.如:点A(2,0)按照ρ(1,90°)变换后得到点A'的坐标为(−1,2)阅卷人三、本大题共3个小题,每小题6分,共18分.得分17.计算:|−318.如图,在▱ABCD中,E,F是对角线BD上的点,且DE=BF.求证:∠1=∠2.19.化简:(y阅卷人四、本大题共2个小题,每小题7分,共14分.得分20.某地两块试验田中分别栽种了甲、乙两种小麦,为了考察这两种小麦的长势,分别从中随机抽取16株麦苗,测得苗高(单位:cm)如下表.甲781011111213131414141415161618乙7101311181213131013131415161117将数据整理分析,并绘制成以下不完整的统计表格和频数分布直方图.苗高分组甲种小麦的频数7≤x<10a10≤x<13b13≤x<16716≤x<193甲乙平均数12.87512.875众数14d中位数c13方差8.657.85根据所给出的信息,解决下列问题:(1)a=,b=,并补全乙种小麦的频数分布直方图;(2)c=,d=;(3)甲、乙两种小麦的苗高长势比较整齐的是(填甲或乙);若从栽种乙种小麦的试验田中随机抽取1200株,试估计苗高在10≤x<13(单位:cm)的株数.21.某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?阅卷人五、本大题共2小题,每小题8分,共16分.得分22.如图,海中有一个小岛C,某渔船在海中的A点测得小岛C位于东北方向上,该渔船由西向东航行一段时间后到达B点,测得小岛C位于北偏西30°方向上,再沿北偏东60°方向继续航行一段时间后到达D点,这时测得小岛C位于北偏西60°方向上.已知A,C相距30nmile.求C,D间的距离(计算过程中的数据不取近似值).23.如图,在平面直角坐标系xOy中,一次函数y=kx+b与x轴相交于点A(−2,0),与反比例函数y=a(1)求一次函数和反比例函数的解析式;(2)直线x=m(m>2)与反比例函数y=ax(x>0)和y=−2x(x>0)的图象分别交于点C,阅卷人六、本大题共2个小题,每小题12分,共24分.得分24.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,过点B作⊙O的切线与AC的延长线交于点D,点E在⊙O上,AC=CE,CE交AB于点F.(1)求证:∠CAE=∠D;(2)过点C作CG⊥AB于点G,若OA=3,BD=32,求FG25.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+3经过点A(3,0),与y(1)求该抛物线的解析式;(2)当−1≤x≤t时,y的取值范围是0≤y≤2t−1,求t的值;(3)点C是抛物线上位于第一象限的一个动点,过点C作x轴的垂线交直线AB于点D,在y轴上是否存在点E,使得以B,C,D,E为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.

答案解析部分1.【答案】D【解析】【解答】解:A、-13是分数,属于有理数,故此选项不符合题意;

B、3.14是有限小数,属于有理数,故此选项不符合题意;

C、0是整数,属于有理数,故此选项不符合题意;

D、故答案为:D.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可逐个判断得出答案.2.【答案】B【解析】【解答】解:数据260000000用科学记数法表示为2.6×108.故答案为:B.【分析】用科学记数法表示绝对值较大的数,一般表示成a×10n的形式,其中1≤∣a∣<10,n等于原数的整数位数减去1,据此可得答案.3.【答案】C【解析】【解答】解:A、该三棱锥的主视图和左视图都为三角形,故此选项不符合题意;

B、该圆锥体的主视图和左视图都为三角形,故此选项不符合题意;

C、该圆柱体的主视图和左视图都为矩形,故此选项不符合题意;

D、该三棱柱的主视图是矩形,左视图为三角形,故此选项不符合题意.故答案为:C.【分析】主视图就是从正面向后看得到的正投影,左视图就是从左面向右看得到正投影,根据各个结合体的摆放方式及特点,分别找出它们的主视图及左视图,即可判断得出答案.4.【答案】B【解析】【解答】解:如图,∵a∥b,

∴∠2+∠3=∠1,

又∵∠1=45°,∠3=30°,

∴∠2=∠1-∠3=15°.

故答案为:B.【分析】由二直线平行,内错角相等,得∠2+∠3=∠1,然后代入∠1与∠3的度数即可算出∠2.5.【答案】C【解析】【解答】解:A、3a与2a3不是同类项,不能合并,故此选项计算错误,不符合题意;

B、3a×2a3=6a4,故此选项计算错误,不符合题意;

C、(-2a3)2=4a6,故此选项计算正确,符合题意;

D、4a6÷a2=4a4,故此选项计算错误,不符合题意.故答案为:C.【分析】整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,从而即可判断A选项;由单项式乘以单项式法则“单项式乘以单项式,把系数与相同字母分别相乘,对于只在某一个单项式含有的字母则连同指数作为积的一个因式”,可判断B选项;由积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可判断C选项;由单项式除以单项式法则“单项式除以单项式,把系数与相同字母分别相除,对于只在被除式含有的字母则连同指数作为商的一个因式”,可判断D选项.6.【答案】D【解析】【解答】解:A、∵四边形ABCD是平行四边形,且∠A=90°,∴平行四边形ABCD是矩形,故此选项不符合题意;

B、∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠C=180°,

又∵∠B=∠C,

∴∠B=∠C=90°,

∴平行四边形ABCD是矩形,故此选项不符合题意;

A、∵四边形ABCD是平行四边形,且AC=BD,∴平行四边形ABCD是矩形,故此选项不符合题意;

A、∵四边形ABCD是平行四边形,且AC⊥BD,∴平行四边形ABCD是菱形,故此选项符合题意.故答案为:D.【分析】根据有一个角为直角的平行四边形是矩形,可判断A选项;又平行四边形对边平行得AB∥CD,由二直线平行,同旁内角互补及已知可推出∠B=∠C=90°,从而有一个角为直角的平行四边形是矩形,可判断B选项;由对角线相等得平行四边形是矩形可判断C选项;由对角线互相垂直的平行四边形是菱形可判断D选项.7.【答案】D【解析】【解答】解:1x−2−3=22−x检验,当x=3时,x-2≠0,

∴原方程的解为x=3.

故答案为:D.【分析】方程两边同时乘以x-2约去分母,将分式方程转化为整式方程,解整式方程求出x的值,再检验即可得出原方程根的情况.8.【答案】A【解析】【解答】解:∵关于x的一元二次方程x2+2x+1-k=0没有实根,

∴△=b2-4ac<0,即22-4(1-k)<0,

解得k<0,

∴正比例函数y=kx得图象经过二四象限,

又∵反比例函数y=2x的图象图象两支分布在第一、三象限,

∴函数y=kx与函数故答案为:A.【分析】由一元二次方程根与系数的关系并结合题意得△=b2-4ac<0,据此列出关于字母k的不等式,求解可得k的取值范围;然后根据正比例函数y=kx中,k>0图象经过一三象限,k<0图象经过二四象限;反比例函数y=k9.【答案】C【解析】【解答】解:如图,连接AD,∵四边形ABCD是圆O的内接四边形,

∴∠C+∠BAD=180°,

∵∠BAE+∠BCD=∠EAD+∠BAD+∠C=236°,

∴∠EAD=236°-180°=56°,

∵EA、ED是圆O的两条切线,且切点为A、D,

∴EA=ED,

∴∠EAD=∠EDA=56°,

∴∠E=180°-∠EAD-∠EDA=68°.

故答案为:C.【分析】连接AD,由圆内接四边形的对角互补得∠C+∠BAD=180°,结合已知可得∠EAD=56°,由切线长定理得EA=ED,进而根据等边对等角及三角形的内角和定理即可求出∠E的度数.10.【答案】A【解析】【解答】解:∵四边形ABCD是黄金矩形,

∴设AD=BC=5-1a,AB=CD=2a,∠D=90°,AB∥CD,

∴∠ACD=∠BAC,

由翻折得∠EAC=∠BAC,

∴∠ACD=∠EAC,

∴AE=CE,

令DE=x,则AE=CE=2a-x,

在Rt△ADE中,∵AD2+DE2=AE2,

∴5-1a2+x2=2a-x2,

解得故答案为:A.【分析】由黄金矩形的性质设AD=BC=5-111.【答案】A【解析】【解答】解:∵二次函数y=ax2+(2a-3)x+a-1的图象经过第一、二、四象限,

∴-2a-32a>0a-1≥0(2a-3)2-4a(a-1)>0

故答案为:A.【分析】根据函数图象经过的象限,结合函数的图象与系数的关系可得对称轴直线在y轴的右侧,抛物线与x轴有两个不同的交点,抛物线与y轴的交点在原点或正半轴,据此建立出关于字母a的不等式组,求解得出a的取值范围.12.【答案】B【解析】【解答】解:∵四边形ABCD是正方形,

∴∠DAE=∠ABF=90°,AD=AB,

又AE=BF,

∴△ADE≌△BAF(SAS),

∴∠ADE=∠BAF,

∵∠BAF+∠DAO=∠BAD=90°,

∴∠ADE+∠DAO=90°,

∴∠AOD=90°,

又∵点M是DF的中点,

∴OM=12DF,∵∠FBG=∠FBH=90°,GB=HB,FB=FB,

∴△BFG≌△BFH(SAS),

∴FH=FG,

∴OM+12FG=12DF+12HF=12DF+HF

当D、F、H三点在同一直线上时,DF+FH有最小值为DH,即OM+12FG有最小值,最小值为DH的一半,

∵AG=2GB,AB=6,【分析】由正方形的性质得∠DAE=∠ABF=90°,AD=AB,从而用SAS判断出△ADE≌△BAF,由全等三角形的对应角相等得∠ADE=∠BAF,进而根据角的构成、等量代换及三角形的内角和定理可得∠AOD=90°,由直角三角形斜边上的中线等于斜边的一半得OM=12DF,在AB延长线上取BH=BG,连接FH,由SAS证△BFG≌△BFH,得FH=FG,则OM+13.【答案】x≥−2【解析】【解答】解:由题意得x+2≥0,

解得x≥-2.故答案为:x≥-2.【分析】根据二次根式的被开方数不能为负数列出不等式,求解即可.14.【答案】3【解析】【解答】解:盒子中黄色小球的个数为x,

由题意得6x+6=23,

解得x=3,故答案为:3.【分析】盒子中黄色小球的个数为x,根据盒子中白色小球的个数比上盒子中小球的总个数等于从中随机摸出一个球是白球的概率列出方程,求解即可.15.【答案】14【解析】【解答】解:∵x1、x2是一元二次方程x2-3x-5=0的解,

∴x1+x2=3,x1x2=-5,

∴(x1-x2)2+3x1x2=(x1+x2)2-x1x2=32-(-5)=14.故答案为:14.【分析】根据一元二次方程根与系数的关系x1+x2=-ba,x1x2=ca求出x1+x216.【答案】(【解析】【解答】解:如图,将点B3,-1向上平移两个单位长度所得对应点M的坐标为3,1过点M作MF⊥x轴于点F,则OF=3,MF=1,∠OFM=90°,

在Rt△OMF中,OM=OF2+MF2=2,sin∠MOF=MFOM=12,

∴∠MOF=30°,

由旋转的性质的∠B'OM=105°,OB'=OM=2,

∴∠B'OE=∠B'OM+∠MOF-∠EOF=45°,

过点B'作B'E⊥y轴于点E,

∴△B'OE是等腰直角三角形,

【分析】根据点的坐标平移规律“横坐标左移减右移加,纵坐标上移加下移减”可得点M3,1,过点M作MF⊥x轴于点F,则OF=3,MF=117.【答案】解:原式=3+1-2×32+2,【解析】【分析】先根据绝对值性质、0指数幂性质“任何一个部位零的数的零次幂都等于1”、特殊锐角三角函数值、负整数指数幂的性质“任何一个不为零的数的负整数指数幂等于这个数的正整数指数幂的倒数”分别进行计算,再计算乘法,最后合并同类二次根式及进行有理数的加法运算即可.18.【答案】证明:∵四边形ABCD是平行四边形,

∴AD=BC,AD∥BC,

∴∠ADE=∠CBF,

又∵DE=BF,

∴△ADE≌△CBF(SAS),

∴∠1=∠2.【解析】【分析】由平行四边形的对边平行且相等得AD=BC,AD∥BC,由二直线平行,内错角相等,得∠ADE=∠CBF,从而由SAS判断出∠ADE=∠CBF,由全等三角形的对应角相等得∠1=∠2.19.【答案】解:原式=y2x+xx-2yx×【解析】【分析】把括号内的整式看成分母为1的式子,通分计算括号内的加法,同时将除式的分子利用平方差公式分解因式,并把除法转变为乘法,然后将被除式的分子利用完全平方公式分解因式,进而计算分式乘法,约分化简即可.20.【答案】(1)2;4(2)13.5;13(3)乙;375【解析】【解答】解:(1)由统计表可得甲种小麦苗高在7≤x<10的频数a=2,

甲种小麦苗高在10≤x<13的频数b=4;

乙种小麦苗高在13≤x<16的频数7,

补全乙种小麦苗高的频数分布直方图如下:

故答案为:2,4;

(2)将甲抽取的16株麦苗的高度从低到高排列后排第8与9位的麦苗高度是13和14,

∴甲种小麦苗高的中位数为c=(13+14)÷2=13.5,

从统计表可得乙种小麦苗高的众数为d=13,

故答案为:13.5;13;

(3)∵8.65>7.85,即甲种小麦苗高的方差大于乙种小麦苗高的方差,

∴甲、乙两种小麦的苗高长势比较整齐的是乙;

若从栽种乙种小麦的试验田中随机抽取1200株,试估计苗高在51610≤x<13的株数为:1200×516=375(株).

故答案为:乙;375.

【分析】(1)由表格可直接得出a,b的值;求出乙种小麦苗高在13x<16的频数,补全乙种小麦的频数分布直方图即可;

(2)众数:在一组数据中,出现次数最多的数据叫做众数,(众数可能有多个);中位数:将一组数据按从小到大(或者从大到小)的顺序排列后,如果数据的个数是奇数个时,则处在最中间的那个数据叫做这组数据的中位数;如果数据的个数是偶数个时,则处在最中间的两个数据的平均数叫做这组数据的中位数,据此求解即可;

21.【答案】(1)解:设A种商品每件进价为x元,B种商品每件进价为y元,由题意可得3x−4y=605x+2y=620

解得x=100y=60(2)解:购进A种商品a件,则购进B种商品(60-a)件,由题意得60-a≥2a150-100a+80-6060-a≥1770,【解析】【分析】(1)设A种商品每件进价为x元,B种商品每件进价为y元,根据“购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元”列出方程组,求解即可;

(2)购进A种商品a件,则购进B种商品(60-a)件,由“购进B商品的件数不少于A商品件数的2倍及销售完A,B两种商品后获得的总利润不低于1770元”列出不等式组,求出最大整数解即可.22.【答案】解:过点C作CF⊥AB于点F,∵∠CAF=45°,AC=30nmile,

∴CF=AF=AC2=152nmile

∵∠CBF=60°,

∴CB=CF∴CD=CB【解析】【分析】过点C作CF⊥AB于点F,易得△ACF是等腰直角三角形,由等腰直角三角形的性质得CF=AF=AC23.【答案】(1)解:将点B(2,3)代入反比例函数y=ax,

可得a2=3,

解得a=6,

∴反比例函数的解析式为y=6x;

将点A(-2,0)与B(2,3)分别代入y=kx+b得

-2k+b=02k+b=3,

解得(2)解:设直线CD与x轴的交点为M,

∵S△OCD=S△OCM+S△ODM=12×6+12×-2=4,

又∵S△OBC=2S△OCD,

∴S△OBC=8,

∵S△BON+S梯形BNMC=S△BOC+S△COM,且S△BON=S△COM,

∴S梯形BNMC=S△BOC=8,

将x=m代入y=6x,

得y=6m

∴Cm,【解析】【分析】(1)利用待定系数法即可解决此题;

(2)设直线CD与x轴交于M,由反比例k的几何意义得S△OCD=S△OCM+S△ODM=4,则S△OBC=8,进而根据S△BON+S梯形BNMC=S△BOC+S△COM,且S△BON=S24.【答案】(1)证明:∵AC=CE∴∠CAE=∠E又∵∴∠E=∠ABC∵AB为⊙O直径∴∠BCA=90°∴∠ABC+∠CAB=又∵DB为⊙O切线∴∠ABD=90°,∴∠D+∠CAB=90°

∴∠CAE=∠D;(2)解:∵BD是圆O的切线,

∴∠ABD=90°,

∵OA=3,

∴AB=2OA=6,

Rt△ABD中,AD=AB2+BD2=36,

∵AB是圆O的直径,

∴∠ACB=90°,

在△ACB与△ABD中,

∵∠DAB=∠BAC,∠ACB=∠ABD=90°,

∴△ABC∽△ABD,

∴ACAB=∴CD=6;

∵CG⊥AB,

∴∠AGC=∠ABD=90°,

∴∴△AGC∽△ABD∴∴∴AG=4∴OG=AG−AO=1,

过点C作CH⊥AE于点H,

∵AC=CE,CH⊥AE,

∴AE=2AH,

∵∠AHC=∠ACB=90°,∠CAH=∠ABC,

∴△ACH∽△BAC,

∴AHBC=ACAB,即AH23=2∵∠E=∠CBF,∠EAF=∠BCF,

∴△CFB∽△AFE,AFCF=22CF=43①x12+3x=8x+85x=4x=45【解析】【分析】(1)由等边对等角及同弧所对的圆周角相等得∠CAE=∠E=∠ABC,由直径所对的圆周角是直角及切线的性质得∠ACB=∠ABD=90°,进而由三角形的内角和定理及同角的余角相等推出∠D=∠ABC,由等量代换得∠CAE=∠D;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论