




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.62.对于实数,定义运算“*”;关于的方程恰好有三个不相等的实数根,则的取值范围是()A. B.C. D.3.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.4.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.或3 B.﹣3 C. D.5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于 B.等于 C.大于 D.无法确定6.如图,在一个周长为10m的长方形窗户上钉上一块宽为1m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为()A.9m2 B.25m2 C.16m2 D.4m27.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.8.若关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,则kA.0或4 B.4或8 C.0 D.49.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm10.二次函数y=ax2+bx+4(a≠0)中,若b2=4a,则()A.y最大=5 B.y最小=5 C.y最大=3 D.y最小=311.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为()A.2个 B.3个 C.4个 D.5个12.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.计算:=.14.二次函数的最小值是.15.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.16.在△ABC中,∠ABC=30°,AB=,AC=1,则∠ACB的度数为____________.17.已知,关于原点对称,则__________.18.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为______.三、解答题(共78分)19.(8分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)20.(8分)如图,在矩形中,点为原点,点的坐标为,点的坐标为,抛物线经过点、,与交于点.备用图⑴求抛物线的函数解析式;⑵点为线段上一个动点(不与点重合),点为线段上一个动点,,连接,设,的面积为.求关于的函数表达式;⑶抛物线的顶点为,对称轴为直线,当最大时,在直线上,是否存在点,使以、、、为顶点的四边形是平行四边形,若存在,请写出符合条件的点的坐标;若不存在,请说明理由.21.(8分)已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.22.(10分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)23.(10分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.(1)求k的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.24.(10分)如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).(1)求抛物线解析式,并求出抛物线的顶点D坐标;(2)当y2<0时、请直接写出x的取值范围;(3)当y1<y2时、请直接写出x的取值范围;(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式.25.(12分)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.26.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
参考答案一、选择题(每题4分,共48分)1、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、C【分析】设,根据定义得到函数解析式,由方程的有三个不同的解去掉函数图象与直线y=t的交点有三个,即可确定t的取值范围.【详解】设,由定义得到,∵方程恰好有三个不相等的实数根,∴函数的图象与直线y=t有三个不同的交点,∵的最大值是∴若方程恰好有三个不相等的实数根,则t的取值范围是,故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.3、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.4、C【分析】先利用判别式的意义得到m>-,再根据根与系数的关系的x1+x2=-(2m+1),x1x2=m2-1,则(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解关于m的方程,最后确定满足条件的m的值.【详解】解:根据题意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根据根与系数的关系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值为.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.5、B【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:,故选:.【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6、D【解析】根据矩形的周长=(长+宽)×1,正方形的面积=边长×边长,列出方程求解即可.【详解】解:若设正方形的边长为am,
则有1a+1(a+1)=10,
解得a=1,故正方形的面积为4m1,即透光面积为4m1.
故选D.【点睛】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般.7、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合.故选A.8、D【解析】根据已知一元二次方程有两个相等的实数根得出k≠0,Δ=(-2k)2-4×k×4=0【详解】因为关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,所以k≠0,Δ=(-2k)2【点睛】此题考查根的判别式,解题关键在于利用判别式解答.9、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.10、D【分析】根据题意得到y=ax2+bx+4=,代入顶点公式即可求得.【详解】解:∵b2=4a,∴,∴∵,∴y最小值=,故选:D.【点睛】本题考查了二次函数最值问题,解决本题的关键是熟练掌握二次函数的性质,准确表达出二次函数的顶点坐标.11、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC是等腰直角三角形时,C(﹣1,2),可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,∵AD==3,BD==,∴△PBD周长最小值为3,故⑤正确.故选D.【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.12、D【详解】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC=,∵AP=x,∴PC=-x,∴PF=FC=,∴BF=FE=1-FC=,∴S△PBE=BE•PF=,即(0<x<),故选D.【点睛】本题考查动点问题的函数图象.二、填空题(每题4分,共24分)13、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.14、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.15、【分析】确定函数的对称轴=-2,即可求出.【详解】解:函数的对称轴=-2,则与轴的另一个交点的坐标为(-3,0)故答案为(-3,0)【点睛】此题主要考查了抛物线与x轴的交点和函数图像上点的坐标的特征,熟练掌握二次函数与坐标轴的交点、二次函数的对称轴是解题的关键.16、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的长,解直角三角形求出∠ACD,即可求出答案.【详解】如图,作AD⊥BC于D,如图1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如图2,同理可得∠ACD=60°,∴∠ACB=120°.故答案为60°或120°.【点睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解.17、1【分析】根据点(x,y)关于原点对称的点是(-x,-y)列出方程,解出a,b的值代入计算即可.【详解】解:∵,关于原点对称∴,解得,∴,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x,y)关于原点对称的点是(-x,-y)是解题的关键.18、1【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】解:连接,
由网格可得,,即,
∴为等腰直角三角形,
∴,
则,故答案为1.【点睛】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.三、解答题(共78分)19、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作于点,由题意知,则,∴.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.20、(1);(2);(3)点的坐标为,【分析】(1)直接利用待定系数法,即可求出解析式;(2)根据特殊角的三角函数值,得到,过点作与点,则,然后根据面积公式,即可得到答案;(3)由(2)可知,当时,取最大值,得到点Q的坐标,然后求出点D和点F的坐标,再根据平行四边形的性质,有,然后列出等式,即可求出点M的坐标.【详解】解:(1)经过、两点,解得,∴抛物线的解析式为:;(2),,,∴,,过点作于点,则∴,;(3)存在符合条件的点,理由如下:由⑵得,,∴当时,取最大值,此时,,又∵点在抛物线上;当时,,的坐标为,的坐标为.设的坐标为,则∴当时,以、、、为顶点的四边形是平行四边形.由,解得:或;∴符合条件的点的坐标为:,.【点睛】本题考查了二次函数的性质,二次函数的最值问题,求二次函数的解析式,平行四边形的性质,以及解一元一次方程,解题的关键是熟练掌握二次函数的性质,熟练运用数形结合的思想进行解题.21、(1),D的坐标为;(2)①;②以A,F,O为顶点的三角形与相似,F点的坐标为或.【分析】(1)将A、B两点的坐标代入二次函数解析式,用待定系数法即求出抛物线对应的函数表达式,可求得顶点;(2)①由A、C、D三点的坐标求出,,,可得为直角三角形,若,则点F为AD的中点,可求出k的值;②由条件可判断,则,若以A,F,O为顶点的三角形与相似,可分两种情况考虑:当或时,可分别求出点F的坐标.【详解】(1)抛物线过点,,,解得:,抛物线解析式为;,顶点D的坐标为;(2)①在中,,,,,,,,,,为直角三角形,且,,F为AD的中点,,;②在中,,在中,,,,,,若以A,F,O为顶点的三角形与相似,则可分两种情况考虑:当时,,,设直线BC的解析式为,,解得:,直线BC的解析式为,直线OF的解析式为,设直线AD的解析式为,,解得:,直线AD的解析式为,,解得:,.当时,,,,直线OF的解析式为,,解得:,,综合以上可得F点的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.22、被拦截时,可疑船只距海岛A还有57.7海里.【分析】过点P作于点D,在中,利用等腰直角三角形性质求出PD的长,在中,求出PC的长,再求的.可得.【详解】解:过点P作于点D由题意可知,在中,∴在中,∴又∴∴∴(海里)即被拦截时,可疑船只距海岛A还有57.7海里.【点睛】此题考查了解直角三角形的应用,熟练掌握直角三角形中三角函数的运用是解题的关键.23、(1)且;(2)见解析,M(3,4);(3)△ABM的面积有最大值,【分析】(1)根据题意得出△=(1-2k)2-4×k×(1-3k)=(1-4k)2>0,得出1-4k≠0,解不等式即可;
(2)y=k(x2-2x-3)+x+1,故只要x2-2x-3=0,那么y的值便与k无关,解得x=3或x=-1(舍去,此时y=0,在坐标轴上),故定点为(3,4);
(3)由|AB|=|xA-xB|得出|AB|=||,由已知条件得出,得出0<||≤,因此|AB|最大时,||=,解方程即可得到结果.【详解】解:(1)当时,函数为一次函数,不符合题意,舍去;当时,抛物线与轴相交于不同的两点、,△,,,∴k的取值范围为且;(2)证明:抛物线,,抛物线过定点说明在这一点与k无关,显然当时,与k无关,解得:或,当时,,定点坐标为;当时,,定点坐标为,∴M不在坐标轴上,;(3),,,,,,最大时,,解得:,或(舍去),当时,有最大值,此时的面积最大,没有最小值,则面积最大为:.【点睛】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点M的坐标是解决问题的关键.24、(1);(2)x<﹣1或x>3;(3)0<x<3;(4)y=-x2+2x+1.【分析】(1)列方程得到C(0,3),B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),列方程即可得到结论;(2)由图象即可得到结论;(3)由图象即可得到结论;(4)当根据平移的性质即可得到结论.【详解】解:(1)对于y1=﹣x+3,当x=0时,y=3,∴C(0,3),当y=0时,x=3,∴B(3,0),∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线解析式为y=a(x+1)(x﹣3),抛物线过点C(0,3),∴3=a(0+1)(0﹣3),解得:a=-1,∴y=-(x+1)(x﹣3)=-x2+2x+3,∴顶点D(1,4);(2)由图象知,当y2<0时、x的取值范围为:x<﹣1或x>3;(3)由图象知当y1<y2时、x的取值范围为:0<x<3;(4)当x=1时,y=﹣1+3=2,∵抛物线向下平移2个单位,∴抛物线解析式为y=﹣x2+2x+3﹣2=﹣x2+2x+1.故答案为:(1)(1,4);(2)x<﹣1或x>3;(3)0<x<3;(4)y=x2+2x+1.【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的平移,及二次函数的性质,是一道综合性比较强的题,看懂图象是解题的关键.25、(1)DE与⊙O相切;理由见解析;(2)4.【分析】(1)连接OD,由D为的中点,得到,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;
(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由得到∠DAC=∠DCA=45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为的中点∴∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 血脂异常护理查房
- 出纳银行业务办理
- 美容美发行业分析报告
- 化学高中课程标准解读
- 办公用品管理
- 船舶货物包装与运输保护
- 新发展英语(第二版)综合教程2 课件 Unit 4 Making Offers and Giving Responses
- a-lively-city知识教学课件
- 人教版数学六年级下册期末应用题
- 北京市丰台区2025年高三下学期正月开学联考历史试题含解析
- 电影《白日梦想家》课件
- 新版中国食物成分表
- 新概念二册课文电子版
- VISI简单操作说明140709
- 自考00911互联网数据库 精华小抄笔记
- 《电子商务法律法规》课程标准
- 中国联通科技创新奖励办法
- 中药饮片储存与养护
- 【《项链》莫泊桑】《项链》课本剧剧本
- 唐长安城高官住宅分布变迁之初步研究
- 蜡疗技术PPT课件
评论
0/150
提交评论