2022-2023学年宁德市重点中学数学九上期末达标检测试题含解析_第1页
2022-2023学年宁德市重点中学数学九上期末达标检测试题含解析_第2页
2022-2023学年宁德市重点中学数学九上期末达标检测试题含解析_第3页
2022-2023学年宁德市重点中学数学九上期末达标检测试题含解析_第4页
2022-2023学年宁德市重点中学数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程(a+1)x2+x+a2-1=0的一个解是x=0,则a的值为()A.1 B.-1 C.±1 D.02.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A. B.C. D.3.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是()A. B. C. D.4.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A.3 B.4 C.5 D.65.下列方程中有一个根为﹣1的方程是()A.x2+2x=0 B.x2+2x﹣3=0 C.x2﹣5x+4=0 D.x2﹣3x﹣4=06.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.7.如图,在△ABC中,点D在BC上一点,下列条件中,能使△ABC与△DAC相似的是()

A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD∙BC D.AC2=CD∙CB8.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.9.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°10.如图,在菱形中,,,,则的值是()A. B.2 C. D.二、填空题(每小题3分,共24分)11.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.12.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.13.如图,将绕直角顶点顺时针旋转,得到,连结,若,则的度数是____.14.点关于原点对称的点为_____.15.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.16.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.17.如图,Rt△ABC中,∠ACB=90°,BC=3,tanA=,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.18.若等腰三角形的两边长恰为方程的两实数根,则的周长为________________.三、解答题(共66分)19.(10分)新华商场销售某种冰箱,每台进货价为元,市场调研表明:当销售价为元时,平均每天能售出台,而当销售价每降低元时,平均每天就能多售出台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到元,这种冰箱每台应降价多少元?20.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为(元),请你分别用含的代数式来表示销售量(件)和销售该品牌玩具获得利润(元),并把结果填写在表格中:销售单价(元)销售量(件)销售玩具获得利润(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?21.(6分)如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。求证:DB平分∠ADE.22.(8分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.23.(8分)如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.24.(8分)小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?25.(10分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.26.(10分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:.(1)求与之间的函数关系式;(2)函数图象中点表示的实际意义是;(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?

参考答案一、选择题(每小题3分,共30分)1、A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a+1)x2+x+a2-1=0为一元二次方程,即.【详解】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0为一元二次方程即.综上所述a=1.故选A.【点睛】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.2、D【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.3、A【解析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.【详解】连结BE,∵点E是∠ACB与∠CAB的交点,∴点E是△ABC的内心,∴BE平分∠ABC,∵AB为直径,∴∠ACB=90°,∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:,DA=R,点E的运动路径为弧AEB,弧长为:,C、E两点的运动路径长比为:,故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.4、D【分析】首先证明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解决问题.【详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【点睛】此题考查平行线分线段成比例,由DE∥BC,可得,求出EC即可解决问题.5、D【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.7、D【解析】根据相似三角形的判定即可.【详解】△ABC与△DAC有一个公共角,即∠ACB=∠DCA,要使△ABC与△DAC相似,则还需一组角对应相等,或这组相等角的两边对应成比例即可,观察四个选项可知,选项D中的AC即ACCD=CBAC,正好是故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题关键.8、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),

所以平移后抛物线的解析式为y=(x+3)2+1,

故选:D.【点睛】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.9、D【分析】由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.10、B【分析】由菱形的性质得AD=AB,由,求出AD的长度,利用勾股定理求出DE,即可求出的值.【详解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故选:B.【点睛】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.二、填空题(每小题3分,共24分)11、50【解析】∵PA,PB是⊙O是切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50°.12、1【解析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.13、【分析】先根据旋转的性质得出,然后得出,进而求出的度数,再利用即可求出答案.【详解】∵绕直角顶点顺时针旋转,得到∵故答案为:70°.【点睛】本题主要考查旋转的性质,直角三角形两锐角互余,掌握旋转的性质是解题的关键.14、【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案.【详解】∵平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数,∴点关于原点对称点的坐标为.故答案是:.【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于原点的对称点的横纵坐标分别互为相反数,是解题的关键.15、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.16、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.17、或【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,综上所述,当FD=或时,⊙F与Rt△ABC的边相切,故答案为:或.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.18、1【分析】先求出一元二次方程的解,再进行分类讨论求周长即可.【详解】,解得:,,当等腰三角形的三边分别为3,3,6时,3+3=6,不满足三边关系,故该等腰三角形不存在;当等腰三角形的三边分别为6,6,3时,满足三边关系,该等腰三角形的周长为:6+6+3=1.故答案为:1.【点睛】本题考查一元二次方程的解法与等腰三角形的结合,做题时需注意等腰三角形中边的分类讨论及判断是否满足三边关系.三、解答题(共66分)19、这种冰箱每台应降价元.【分析】根据题意,利用利润=每台的利润×数量列出方程并解方程即可.【详解】解:设这种冰箱每台应降价元,根据题意得解得:,为了减少库存答:这种冰箱每台应降价元.【点睛】本题主要考查一元二次方程的实际应用,能够根据题意列出方程是解题的关键.20、(1)1000-10x,-10x2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.【分析】(1)根据销售单价每涨1元,就会少售出10件玩具,再列出销售量y(件)和销售玩具获得利润(元)的代数式即可;(2)令(1)所得销售玩具获得利润(元)的代数式等于10000,然后求得x即可;(3)、先求出x的取值范围,然后根据(1)所得销售玩具获得利润(元)的代数式结合x的取值范围,运用二次函数求最值的方法求出最大利润即可.【详解】解:(1)∵根据销售单价每涨1元,就会少售出10件玩具,∴销售量y(件)为:600-10(x-40)=1000-10x;销售玩具获得利润(元)为:[600-10(x-40)](x-30)=-10x2+1300x-30000故答案为:1000-10x,-10x2+1300x-30000;(2)令-10x2+1300x-30000=10000,解得:x=50或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)根据题意得:解得:44≤x≤46由w=-10x2+1300x-30000=-10(x-65)2+12250∵-10<0,对称轴是直线x=65.∴当44≤x≤46时,w随增大而增大∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.21、证明见解析.【分析】根据旋转的性质得到△ABC≌△DBE,进一步得到BA=BD,从而得到∠A=∠ADB,根据∠A=∠BDE得到∠ADB=∠BDE,从而证得结论.【详解】证明:∵将△ABC绕点B旋转得到△DBE,∴△ABC≌△DBE∴BA=BD.∴∠A=∠ADB.∵∠A=∠BDE,∴∠ADB=∠BDE.∴DB平分∠ADE.【点睛】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了邻补角定义.22、(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.23、(1)y=;(2)﹣1<x<0或x>3;(3)【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【详解】(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=经过点B,∴k=3×1=3,∴双曲线的解析式为y=;(2)解得或,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解,解得或,∴D(,),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD==.【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是求得交点坐标.24、(1)如图,BE为所作;见解析;(2)小亮(CD)的影长为3m.【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,连接PA并延长交直线BO于点E,则可得到小亮站在AB处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论