函数y=(26√x+55)55x的性质及图像_第1页
函数y=(26√x+55)55x的性质及图像_第2页
函数y=(26√x+55)55x的性质及图像_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数y=eq(26\r(x)+55)*55x的性质及图像主要内容:本文主要计算函数y=eq(26\r(x)+55)*55x的定义域、单调性、凸凹性、极限等性质,并用导数工具解析函数的单调和凸凹区间,同时简要画出函数的示意图。※.函数的定义域:函数中含有根式,则有:x≥0所以函数的定义域为:[0,+∞)。※.函数的单调性思路一:通过两个函数单调性来判断。因为函数y1=eq26\r(x)+55为根式函数,在定义域上为增函数;函数y2=55x为正比例函数,系数为正数,所以也为增函数,则二者函数的乘积y=y1*y2为增函数。思路二:本题也通过导数知识来解析函数的单调性,步骤如下:本题通过导数知识来解析函数的单调性,步骤如下:y=eq(26\r(x)+55)*55x,对函数自变量求导,得:eq\f(dy,dx)=55*eq[eq\f(26*x,2eq\r(x))+(26eq\r(x)+55)*1],=55*eq(eq\f(78,2)eq\r(x)+55)>0,所以函数在定义域上为增函数。※.函数的极限lim(x→0)eq(26\r(x)+55)*55x=0。lim(x→+∞)eq(26\r(x)+55)*55x=+∞。※.函数的凸凹性∵eq\f(dy,dx)=55*eq(eq\f(78,2)eq\r(x)+55),∴eq\f(d²y,dx²)=55*(eq\f(78,2)*eq\f(1,2)*eq\f(1,eq\r(x))),=55*eq\f(39,2)*eq\f(1,eq\r(x))>0.即函数y在定义域上为凹函数。※.函数的五点图x00.020.090.160.3626eq\r(x)+5555.058.762.865.470.655x01.104.958.8019.80y064.57310.86575.521397.88※.函数的示意图y=eq(26\r(x)+55)*55xy(0.36,1397.88)(0.16,575.52)(0.09

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论