地铁车辆制动系统设计与原理分析_第1页
地铁车辆制动系统设计与原理分析_第2页
地铁车辆制动系统设计与原理分析_第3页
地铁车辆制动系统设计与原理分析_第4页
地铁车辆制动系统设计与原理分析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd...城轨车辆制动系统的原理分析课题概要城市轨道交通运输是我国交通运输网络的重要组成局部,它的开展与城市经济的开展息息相关。目前,世界各地的主要政治、经济、文化等中心城市都兴建了不同形式的轨道交通运输网,有些还成为所在城市的重要景观和标志性建筑。我国北京、上海、广州、南京等城市的地下铁道已经开通,成为这些城市市内交通运输的支柱。另外还有许多其他的城市交通网也在筹建和建设之中。城市轨道交通运输的开展必将为我国经济的开展插上腾飞的翅膀。地铁车辆制动系统用于保证地铁车辆的运行安全,具有多种操作模式,与传统列车制动系统相比,构造和工作原理更为复杂。通过对此课题的学习和设计,使学生能更好的理解地铁车辆制动和空气管路系统的工作原理,培养学生运用所学的根基知识和专业知识的能力,提高学生利用所学基本理论和自身具备的技能来分析解决本专业相应问题的能力,使学生树立正确的设计思想,掌握工程设计的一般程序和方法,完成工程技术人员必须具备的基本能力的培养和训练。设计内容与要求1、熟悉地铁制动在铁路运输中的作用。2、简单介绍地铁车辆制动系统的组成。3、详细分析地铁车辆及列车制动系统的工作原理和工作过程。4、分析现有制动系统存在的缺乏之处,利用自己所学的专业知识,提出改良设计意见和具体实施方案。设计参考书1.《城市轨道交通车辆制动技术》殳企平编著水利水电出版社2.《列车制动》侥忠主编中国铁道出版社3.《电力机车制动机》那利和主编中国铁道出版社4.:///ec/C356/kcms-2.htm5.://hasea6.://china14357.://chinarailway设计说明书内容封面目录内容摘要〔200—400字左右,中英文〕引言正文〔设计课题,内容与要求,设计方案,原理分析,设计过程及特点〕设计图纸完毕语附录〔图表,材料清单,参考资料〕设计进程安排第1周:资料准备与借阅,了解课题思路。第2周:熟悉地铁制动在铁路运输中的作用。第3-6周:介绍地铁车辆制动系统的组成,分析地铁车辆及列车制动系统的工作原理和工作过程。第7周:检查,完成说明书,打印,装订。第8周:毕业辩论准备及辩论。毕业设计辩论及论文要求毕业设计辩论要求辩论前三天,每个学生应按时将毕业设计说明书或毕业论文.专题报告等必要资料交给指导教师审阅,由指导教师写出审阅意见。学生辩论时对自述局部应写出书面提纲,内容包括课题任务,目地和意义,所采用的原始资料或参考文献,设计的基本内容和主要方法,成果结论和评价。辩论小组质询课题的关键问题,质询与课题密切相关的基本理论,知识,设计与计算方法实验方法,测试方法,鉴别学生独立工作能力,创新能力。2、毕业设计论文要求文字要求:说明书要求打印〔除图纸外〕,不能手写。文字通顺,语言流畅,排版合理,无错别字,不允许抄袭。摘要随着城市化进程的加快,越来越多的人们都在寻求更快捷、更环保的出行方式。城市轨道交通由于具有方便快捷、绿色环保等诸多优点,受到了大家的广泛青睐。而城市轨道列车的运营有别于干线铁路车辆,它需要频繁的启动、调速、制动,这就对车辆制动系统的性能提出了更高的要求。1〕为适应资源节约型和环境友好型社会建设的现实需要,城市轨道车辆所采用的制动系统应尽可能最大的利用电制动,它既能通过能量的回收而产生一定的经济效益,又能减少闸瓦的机械磨耗而降低对环境的影响。为了适应短距离起停车的特点,必须使列车启动快、制动距离短。这就要求制动系统装置具有操纵灵活,响应迅速,停车平稳、准确和制动力大等特点。3〕城市轨道车辆为动、拖车编组列车,所以要求编组列车的各车辆的制动能力尽可能一致,并且能够适应列车乘客量的变化,具有空、重车的调节功能,以降低制动时列车的纵向冲击。本论文主要讲述了地铁制动的类型、地铁车辆及列车制动系统的工作原理和工作过程。并分析了其的优点和缺乏之处。关键词:地铁制动供风系统地铁车辆及列车制动系统的工作原理和工作过程ABSTRACTWiththespeedingupofurbanization,moreandmorepeoplearelookingforamoreefficient,moreenvironmentallyfriendlywaytotravel.Urbanrailtransitwithaconvenient,greenenvironmentalprotection,andmanyotheradvantages,iswidelyfavoredbyeveryone.Andoperationofurbanrailtrainisdifferentfromtherailwayvehicle,itrequiresfrequentstart,speedcontrol,brake,it'sontheperformanceofthevehiclebrakesystemputforwardhigherrequirements.1)inordertomeettherealityoftheconstructionoftheresource-conservingandenvironment-friendlysocietyneeds,theurbanrailvehicles,themaximumbrakingsystemshouldbeadoptedbytheuseofelectricbraking,itcanthroughtheenergyrecyclingandproducecertaineconomicbenefits,andcanreducethemechanicalwearofbrakeshoeandreducetheimpactontheenvironment.2〕Inordertoadapttothecharacteristicsofshortonparking,mustmakethetrainstartfast,shortbrakingdistance.Thisrequiresabrakingdeviceisflexible,quickresponseandparkingsteady,accurate,andbrakingforcebig,etc.3)forurbanrailvehicle,trailermarshaling,sorequiresmarshalingofeachvehiclebrakingabilityasconsistentaspossible,andtheabilitytoadapttothechangingofthetrainpassengershaveemptyandheavyvehicleadjustfunction,inordertoreducebrakingwhenthetrainlongitudinalimpact.Thispapermainlytellsthestoryofthesubwaybraketype,metrovehicleandtrainbrakingsystemworkingprincipleandworkingprocess.Andanalyzestheiradvantagesanddisadvantages.Keywords:subwaymetrovehiclebrakeforthewindsystemandbrakingsystemworkingprincipleandworkingprocess引言地铁是一种独立的有轨交通系统,是线路的大局部建筑物在地下,。在我国,随着改革开放的深入进展,城市面貌也在发生变化,特别是市政建设步伐进一步加快,力度也在不断的加大,对旧城区改造也在向纵深开展。但是旧城区一般既有各种建筑物、构造物密集,市政道路多,干扰大,改建难度十分大。由于地铁建设基本上是在地下进展,在城市的改建过程中优势对比明显,因此我国大局部城市在旧城改造规划中选择了地下铁道。但地铁建设造价昂贵,而且建设资金基本上是有地方财政承当,所以我国目前的地铁建设大局部在沿海经济对比兴旺的城市进展。如北京、上海、天津、广州都拥有地铁。不可否认,制动系统作为城轨车辆的重要系统,直接涉及到车辆的运行性能和安全,也可以说地铁车辆制动系统对于地铁车辆安全运行有着重大的作用。该系统包含有电制动和空气制动两种制动装置。常用制动过程中,由于电制动对设备没有磨损并且节能,所以在电制动有效的情况以下车优先使用动车的电制动,在电制动不能为满足制动需求时,电制动与空气制动进展复合制动。为适应资源节约型和环境友好型的社会现实的需要,制动系统为其选用电制动。它既能通过能量的回收而产生一定的经济效益,又能减少闸瓦的机械磨耗而降低对环境的影响。其次,制动系统还具有操纵灵活,响应快速,停车平稳,准确和制动力大等特点。这样可以让列车启动快、制动距离短,可以短距离起停车。最后城市轨道车辆为动、拖车编组列车,所以编组列车的各车辆制动的能力尽可能一致,并且能够适应列车乘客量的变化,具有空、重车的调节功能,以降低制动时的纵向冲击,从而可以保证乘客们的安全。除此之外,该制动系统还有其他的一些功能。为确保列车乘坐舒适该系统具有冲动控制功能。系统还能够通过接收输入信号检测制动是否缓解,即检测制动不能缓解功能,产生制动不能缓解状态时,它可通过强迫缓解开关给强迫缓解指令回路供电,从而控制不能缓解车辆的压力控制阀,实现缓解制动。目录TOC\o"1-3"\h\u25233第一章国内外机车车辆的检修制度及开展现状9144611.1制动的基本概念1061111.2制动力的产生1013101.2.1制动力的描述10216411.2.2制动力的产生1159231.3制动方式12233921.3.1按电动车组动能转移方式分类1260311.4制动的分类13227501.4.1制动力形成方式分类1317511.4.2制动源动力分类138681.5现代城轨交通车辆制动系统的主要功能和组成局部13238131.5.1制动系统的主要功能13213631.5.2现代城轨交通车辆的制动系统的组成143110第二章地铁车辆电气制动系统15236212.1电气制动的概念15211722.2再生制动15314102.2.1再生制动的概念15250292.2.2再生制动的原理15196052.2.3再生制动的分类16134372.3电阻制动17108552.3.1电阻制动的概念1729952.3.2电阻制动的原理17314592.3.3电阻制动的制动力的控制188071第三章空气制动系统2063193.1空气制动20324893.2空气制动的分类206003.3直通式空气制动机2051553.3.1基本构成2038783.3.2基本作用原理20160983.3.3直通空气制动机特点21306083.4自动空气制动机22141623.4.1基本构成22139153.4.2基本作用原理22192693.4.3自动空气制动机特点24122003.5直通自动空气制动机24198473.5.1基本构成24136973.5.2基本作用原理2442923.5.3直通自动空气制动机特点2621166第四章风源系统27313354.1风源系统的构成27249004.2空气压缩机27229804.2.1活塞式空气压缩机27213564.2.2螺杆式空气压缩机28157864.3空气枯燥器29141424.3.1单塔式空气枯燥器29101904.3.2双塔式空气枯燥器305929第五章根基制动装置32185335.1根基制动装置的概述3237575.2闸瓦制动3236605.3盘形制动32140095.3.1基本构成33111455.3.2盘形制动的特点3358915.3.3盘形制动装置的分类3431301第六章防滑器装置3554026.1防滑装置的概述3555636.2防滑装置的种类359396.3微机控制防滑器352096.3.1构造35125866.3.2工作原理36293626.3.3微机控制防滑器的特点:36249第七章制动控制系统38116097.1概述38236617.2构成38173537.2.1电子制动控制单元38154527.2.2空气制动控制单元39249257.2.3电气指令单元3913850毕业设计心得4123768致谢4126927参考文献43第一章国内外机车车辆的检修制度及开展现状1.1制动的基本概念列车制动是人为地利用制动力使列车减速、停车、阻止其运动或加速的统称。要改变运动物体的运动状态,必须对它施加外力。对于列车,人为地使其减速或阻止其加速的外力是由列车制动装置产生的,它与列车运动方向相反,由轨道作用于车轮轮周的这种外力,叫制动力。为了能列车施行制动作用,需要在列车上安装一套完整的制动系统〔装置〕。对传统的机车车辆运用模式而言,列车制动装置是指机车制动装置、车辆制动装置的组合,通常制动装置是指能产生制动作用的整套机构,通常包括制动机、根基制动装置、停放制动〔驻车〕装置。制动机是制动装置中受司机直接控制的局部,通常包括,从制动软管连接器至最终产生制动力的制动缸的一整套机构。根基制动装置是整个制动装置中用于传递、放大制动力的一整套机构。停放制动〔也叫驻车制动或停车制动〕装置是使列车在停车状态下〔无动力〕依然能保持制动力、防止列车溜逸的制动装置。这种制动功能也可以借助于常规制动〔行车制动〕系统的全部、或其中一局部或某些部件来实现。制动装置是通过操纵司机制动控制器〔简称司控器〕发出的制动指令,指挥制动控制局部向根基制动的制动缸送风,使制动缸获得必需的空气压力,经根基制动装置的放大变换,最终形成列车制动力的。制动作用的解除叫做缓解,包括分步操纵的局部解除〔称局部缓解、阶段缓解〕和一次操纵的彻底解除〔称彻底缓解、一次缓解〕。1.2制动力的产生1.2.1制动力的描述制动力是由制动装置引起的与列车运行方向相反的外力,是纵向力。制动力比列车运行阻力〔自然产生的〕大得多。列车制动减速过程中,制动力起主要作用〔尽管列车运行阻力也起作用〕。与牵引力一样,制动力同样受黏着限制〔非黏制动除外〕。1.2.2制动力的产生制动力可以有多种方式产生,以最传统的空气制动为例,用闸瓦压紧在车轮踏面上〔参见图1-1〕,或用闸片压紧在制动盘面上〔参见图1-2〕,可以获得所需要的制动力。1.3制动方式制动方式可以按制动时电动车组动能转移方式、制动力获取方式和制动源动力的不同进展分类。1.3.1按电动车组动能转移方式分类按制动时电动车组动能的转移方式不同,动车组的制动可以分为二类:一类是摩擦制动方式,即通过摩擦把动能转化为热能,然后消散于大气;二是动力制动方式,即把动能通过发电机转化为电能,然后将电能从车上转移出去。〔1〕摩擦制动电动车组常用的摩擦制动方式主要有闸瓦制动和盘形制动,在高速电动车组中,往往还要采用磁轨制动来辅助紧急制动。磁轨制动属于轨道电磁制动方式中的一种,也属于摩擦制动。〔2〕动力制动电动车组在制动时,将牵引电动机转变为发电机,将列车动能转化为电能,对这些电能的处理方式不同又可分成电阻制动和再生制动两种形式。电阻制动是把列车动能转化出来的电能直接消耗在随车安装的制动电阻上转变为热能,然后再通过通风设备把热散掉;再生制动是把这种电能通过牵引传动的变流器逆向变换,再返回电网。1.4制动的分类1.4.1制动力形成方式分类按电动车组制动力的获取方式,可分为黏着制动与非黏着制动。这是按照制动力形成是否依赖于轮轨之间的黏着关系而划分的。在传统的制动方式中,如闸瓦制动、盘形〔包括油压卡钳盘式、涡流盘式〕制动、电阻制动和再生制动均属于黏着制动,因为其制动力的产生都离不开轮轨间的黏着关系,即轮轨接触区域必须有黏着作用,并且制动力的大小受黏着限制。相比而言,轨道电磁制动〔磁轨制动、轨道线性涡流制动〕则属于非黏着制动,因为其制动力的产生与轮轨间的黏着作用没有直接关系,只取决于制动体与钢轨之间因接触摩擦〔如磁轨制动〕所产生的制动力,或因电涡流作用〔轨道线性涡流制动〕而产生电磁力。目前处于研究阶段的高速动车组制动方式中还有一种在高速下通过车体伸出的迎风扰流板而产生空气作用力的制动方式,也称翼板制动,就制动力的形成而言也属于非黏制动。1.4.2制动源动力分类目前电动车组所采用的制动方式中,制动的原动力主要有压缩空气和电力。以压缩空气为源动力的制动方式称为空气制动方式。如闸瓦制动、盘形制动等都为空气制动方式。以电为源动力的制动方式称为电气制动方式,如动力制动、轨道电磁制动等均为电气制动方式。1.5现代城轨交通车辆制动系统的主要功能和组成局部1.5.1制动系统的主要功能制动系统具有足够的制动能力,能保证车辆在规定的制动距离内停车。制动系统操作灵活、反响迅速、停车平稳。制动系统包括动力制动〔电气制动〕和空气制动〔机械制动〕两种制动方式,并且在正常制动过程中,尽量首先使用动力制动,以减少空气制动对城市的环境污染并降低车辆维修成本。制动系统具有可靠的安全保障系数,即使个别车辆发生故障或在较长距离和较大坡度的坡道上运行,也有足够的制动力保证列车可靠制动和停车。车辆具有载荷校正能力,能根据乘客载荷的变化自动调节制动力,使车辆制动力保持恒定,限制冲动力,保证乘客乘坐的舒适性。制动系统具有紧急制动功能。紧急制动装置除由司机操作外,还可由其他行车人员操作。1.5.2现代城轨交通车辆的制动系统的组成动力制动系统。它一般与牵引系统连在一起形成主电路,包括再生反响电路和制动电阻器,将动力制动产生的电能反响给供电接触网或消耗在制动电阻器上。空气制动系统。它由供气局部、控制局部和执行局部〔根基制动装置〕等组成。供气局部有空气压缩机组、空气枯燥机和风缸等;控制局部有电—空〔EP〕转换阀、紧急阀、称重阀和中继阀等;执行局部就是闸瓦制动装置和盘式制动装置等。指令和通信网络系统。它既是传送司机指令的通道,同时也是制动系统内部数据交换及制动系统与列车控制系统进展数据通信的总线。1.6小结列车以很多的形式存在,比方动能转移方式、制动力获取方式和制动源动力的不同等。列车制动系统有着操作灵活、反响迅速、停车平稳等特点。它由动力制动、空气制动、指令和通信网络系统组成。第二章地铁车辆电气制动系统2.1电气制动的概念在各种形式的制动中,电气制动是一种较理想的动力制动方式,它是建设在电动机的工作可逆性根基上的。在牵引工况时,电动机从接触网吸收电能,将电能转换为机械能,产生牵引力,使列车加速或在上坡的线路上以一定的速度运行;在制开工况时,列车停顿从接触网受电,电动机改为发电机工况,将列车运行的机械能转换为电能,产生制动力,使列车减速或在下坡线路上以一定的限速度运行。车辆进展电气制动时,首先应该是再生制动,即向供电网反响电能。如果触网电压过高或同一供电区段无其他车辆吸收反响能量,则电路转为电阻制动,把能量消耗在电阻器上。2.2再生制动2.2.1再生制动的概念再生制动亦称反响制动,是一种使用在电动车辆上的制动技术。在制动时把车辆的动能转化及储存起来;而不是变成无用的热。再生制动在电力机车、有轨电车、无轨电车及纯电动或混合动力汽车上常见。电力机车、有轨电车、无轨电车通常是把产生的电能输回接触网,而汽车则可能把电能储在飞轮、电池或电容器之内。传统的的动力制动则会把电能在电阻转成热能后逸散。最普通的制动方法会把车的动能,以摩擦直接转化成热能。“再生制动〞和另一种原理接近,但较为简单的“动力制动〞,则是把电动机转成发电机使用,把车辆的动能转成电能。动力制动通常只会把产生的电,经过电阻转成无用的热放走。而再生制动则会把电力储起来或透过电网送走,再生循环使用。使用再生制动的车辆仍然会有传统的摩擦制动,提供快速、强力的制动。一般的再生制动只会把约30%的动能再生使用,其余的动能还是成为热。这效率根据不同的使用环境而有所不同。2.2.2再生制动的原理将牵引电机的电动机工况转变为发电机工况,将列出动能转化为电能,电能通过转换电器和受电弓反响给供电触网,可提供给相邻运行的列车使用的制动方式。再生制动的三种不同的制动控制策略:具有最正确制动感觉的串联制动;具有最正确能量回收率的串联制动;以及并联制动。在前轮上的再生制动比后轮上的再生制动将更为有效,同时大局部制动能量消耗在10~50km/h的车速范围内。再生制动原理图2.2.3再生制动的分类能量消耗型。这种方法是在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制一个功率管的通断。在直流母线电压上升至700V左右时,功率管导通,将再生能量通入电阻,以热能的形式消耗掉,从而防止直流电压的上升。由于再生能量没能得到利用,因此属于能量消耗型。同为能量消耗型,它与直流制动的不同点是将能量消耗于电机之外的制动电阻上,电机不会过热,因而可以较频繁的工作。并联直流母线吸收型。适用于多电机传动系统〔如牵伸机〕,在这个系统中,每台电机均需一台变频器,多台变频器共用一个网侧变流器,所有的逆变部并接在一条共用直流母线上。这种系统中往往有一台或数台电机正常工作于制动状态,处于制动状态的电机被其它电动机拖动,产生再生能量,这些能量再通过并联直流母线被处于电动状态的电机所吸收。在不能完全吸收的情况下,则通过共用的制动电阻消耗掉。这里的再生能量局部被吸收利用,但没有回馈到电网中。能量回馈型。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时,可逆变流器将再生能量回馈给电网,使再生能量得到完全利用。但这种方法对电源的稳定性要求较高,一旦突然停电,将发生逆变颠覆。再生制动可以用于所有电动机械中,而电动机械主要是旋转式,例如电动机,所以再生制动常见于电动机拖动的系统中,简称电力拖动系统。2.3电阻制动2.3.1电阻制动的概念又称动态制动是铁路机车的一种制动方式,广泛应用于电力机车和电传动柴油机车。在制动过程中,将原来驱动轮对的牵引电动机转变为发电机,利用列车的惯性由轮对带动电动机转子旋转而发电,从而产生反转力矩,消耗列车的动能,到达产生制动作用的目的。而电机发出的电流通过专门设置的电阻器,采用通风散热将热量消散于大气。由于电阻制动的原理是因为转子有电流流动,在定子的磁场产生与转动方向相反的力矩,制动力与速度成正比,因此当机车运行速度较低〔~10公里/小时〕的时候,由于转子转速慢,减少了产生的电流和反转力矩,会导致制动效率大幅下降甚至失效。加馈电阻制动正是为了解决这个问题而出现,在低速制动时由机车电路系统为转子供给一定电流,增加制动力,使机车在慢速下也能进展电阻制动,有效扩大电阻制动的应用范围。再生制动是在电阻制动根基上进一步开展而成的制动方式,将制动过程发出的电能反响回电气化铁路供电网,使本来由电能变成的动能再生为电能,而不是变成热能消散掉。2.3.2电阻制动的原理电阻制动是利用直流电机的可逆原理。在机车需要减速时,将机车由牵引工况转换为制开工况,此时牵引电动机转换为发电机并通过轮对将列车的动能转变为电能,再通过制动电阻把电能转换为热能消耗掉,牵引电动机的转轴上产生的电磁制动转矩通过减速齿轮作用在机车动轮上形成制动力,使机车速度降低,起到制动作用。机车在牵引工况时,牵引电动机为串励电动机。牵引整流柜输出的电流通过电空接触器流入牵引理发动机的电枢绕阻、换向极绕组和励磁绕组,于是产生电磁转矩MD。在转矩的作用下,电动机按MD方向旋转,转速和转矩方向一样,这个转矩通过齿轮传到动轮上去,形成了牵引力FK,牵引力FK的方向与机车运行方向一样。机车在制开工况时,牵引电动机作为发电机运用。由于串励发电机有两个缺点,一是不能稳定的工作,二是励磁绕组与电枢绕组串联,磁通很难控制,所以在电阻制动时,把牵引电动机改接成他励发电机工作,这样可以在较大范围内均匀地调节制动力,很方便地控制机车的速度。电机的励磁绕组仍由牵引整流柜通过电空接触器供给励磁电流而电枢绕组通过工况转换开关与制动电阻相联。电机电枢通过齿轮被轮轴驱动,在电枢绕组内产生感应电势。在此电势的作用下产生电流流过制动电阻。于是电枢电流和磁通相互作用产生电磁力矩,它的方向可用左手定则判定。电磁力矩与电枢旋转方向相反,这个电磁力矩经过齿轮传递到轮对上,形成制动力。因制动力的方向与机车运行方向相反,在此力作用下使机车运行速度降低。电阻制动原理图2.4小结地铁车辆电气制动系统主要分为电气制动、再生制动和电阻制动。在各种形式的制动中,电气制动是一种较理想的动力制动方式,它是建设在电动机的工作可逆性根基上的。再生制动分为能量消耗型、并联直流母线吸收型和能量回馈型.第三章空气制动系统3.1空气制动虽然电制动可以提供强大的制动力,但空气制动目前对于地铁来说仍然不可缺少。这是因为:直流电机的制动力随着列车速度的降低而减少;而交流电机虽然可通过改变转差率来控制制动力的大小,理论上可使制动力不受列车速度的限制,但从高速到停顿均能有效作用的、可靠的电制动装置尚处于研究阶段。3.2空气制动的分类直通式空气制动机自动空气制动机直通自动空气制动机3.3直通式空气制动机3.3.1基本构成在车辆上,直通式空气制动机主要由制动管和制动缸等组成;在机车上,直通式空气制动机除包括制动管和制动缸外,还包括空气压缩机、总风缸及操纵整个列车制动系统的制动阀等组成局部。如图1-1.图1-1直通式空气制动机构造原理图1—空气压缩机;2—总风缸;3—调压阀;4—制动阀;5—制动管;6—制动缸7—车轮;8—闸瓦;9—制动缸活塞杆;10—制动缸弹簧;11—制动缸活塞。3.3.2基本作用原理制动系统的工作过程主要包括制动、缓解与保压3个基本状态。制动状态:司机操纵制动阀手柄置于“制动位〞;总风缸内的压力空气经调压阀、制动阀和列车管直接向机车制动缸和车辆制动缸充风;压力空气推动制动缸活塞压缩弹簧移动,并由根基传动装置将此推力传递到闸瓦上,使闸瓦压紧车轮产生制动作用。缓解状态:司机操纵制动阀手柄置于“缓解位〞;机车、车辆制动缸内的压力空气经列车管和制动阀排向大气;在制动缸弹簧作用下,制动缸活塞反向移动,并通过根基制动装置带动闸瓦离开车轮,实现缓解作用。保压状态:司机操纵制动阀手柄置于“中立位〞;既关断机车、车辆制动缸的充风气路,又关断其排风气路;机车、车辆制动缸内保持一定的压力,实现保压作用。直通式空气制动机原理图3.3.3直通空气制动机特点制动管增压制动、减压缓解,列车别离时不能自动停车。能实现阶段缓解和阶段制动。制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太准确。制动时全列车制动缸的压缩空气都由总风缸供给;缓解时,各制动缸的压缩空气都须经制动阀排气口排人大气。因此前后车辆的制动的一致性不好。3.4自动空气制动机3.4.1基本构成自动空气制动机是在直通式空气制动机的根基上增设一个副风缸和一个三通阀〔或分配阀〕而构成的。如图1-2图1-2自动空气制动机构造原理图1—空气压缩机;2—总风缸;3—调压阀;4—制动阀;5—制动管;6—三通阀〔分配阀〕;7—副风缸;8—车轮;9—闸瓦;10—制动缸;11—制动缸活寨杆;12—制动缸弹簧;13—制动缸活塞3.4.2基本作用原理缓解状态:司机将制动阀手柄置于“缓解位〞;压力空气经制动阀向列车管充风,三通阀活塞两侧压力失去平衡而形成向右的压力差,推动活塞带动滑阀、节制阀右移;开通充气沟,使列车管压力空气经充气沟进入副风缸贮备;开通制动缸经滑阀的排风气路,使制动缸排风,最终使闸瓦离开车轮实现缓解作用。制动状态:司机将制动阀手柄置于“制动位〞;列车管内压力空气经制动阀排风,推动活塞左移,关闭充气沟;活塞带动滑阀、节制阀左移,使滑阀遮盖排气口关断制动缸的排风气路,并使节制阀开通副风缸向制动缸充风的气路;压力空气充入制动缸,推动制动缸活塞右移,使闸瓦压紧车轮产生制动作用。保压状态:司机将制动阀手柄置于“中立位〞;切断列车管的充、排风通路,列车管压力停顿变化。当副风缸压力降低到稍低于列车管压力时,三通阀活塞带动节制阀微微右移,切断副风缸向制动缸充风的气路,制动缸既不充风也不排风,制动机呈保压状态。自动空气制动机原理图3.4.3自动空气制动机特点制动管减压制动、增压缓解,列车别离时能自动制动停车。由于制动缸的风源与排气口离制动缸较近,其制动与缓解不再通过制动阀进展,因此制动与缓解一致性较直通制动机好,列车纵向冲动较小,适合于较长编组的列车。有阶段制动及一次缓解性能。3.5直通自动空气制动机3.5.1基本构成直通自动空气制动机与自动空气制动机在制动机的组成上基本一样,只增加一个定风缸。3.5.2基本作用原理缓解状态:司机将制动阀置于“缓解位〞,总风缸的压缩空气经给气阀和制动阀充向列车管。再经列车管通向各车辆的三通阀主鞲鞴上侧。鞲鞴在列车管压力作用下下移,形成以下两条通路:①列车管压缩空气→主鞲鞴上侧→充气沟→主鞲鞴下侧→定压风缸②制动缸的压缩空气→制动缸压力鞲鞴上侧→排气阀口→鞲鞴杆中心孔→制动缸压力鞲鞴下侧→三通阀排气口上诉第二条通路在初充气时,由于制动缸内无压缩空气而没有排气现象。在这一位置时,定压风缸充气,制动缸缓解。而副风缸只要其压力低于列车管压力,在单向阀作用以下车管会自动的向其补充压缩空气,并不受作用位置的限制。制动状态:制动阀手柄置于“制动位〞,列车管以一定的减压速度减压,定压风缸的压缩空气来不及通过充气沟逆流,主鞲鞴上下两侧形成压差,主鞲鞴上移。首先排气阀口顶住进气阀,关闭了制动缸通大气的通路。同时充气沟鞴主鞲鞴遮断,主鞲鞴两侧压差进一步加大,主鞲鞴抑制进排气阀弹簧压力顶开进排气阀。形成副风缸通过进气阀座向制动缸充气的通路。同时制动缸压力也作用在制动缸压力鞲鞴上侧。保压状态:制动阀手柄置于“保压位〞,列车管停顿减压。这时主鞲鞴上侧压力停顿下降,但三通阀仍处于制动位,副风缸继续向制动缸充气,即制动缸压力鞲鞴上侧继续增加,当制动缸压力作用在制动缸压力鞲鞴上侧产生的向下力,加上进排气阀弹簧的伸张力,再加上主鞲鞴上侧列车管压力作用下产生的向下力,上诉三个向下的力之和稍稍大于定压风缸压力作用在主鞲鞴下侧产生的向上力时,进排气阀压着排气阀口,使鞲鞴稍稍下移,直至进排气阀紧贴进排气座,切断副风缸向制动缸的充气通路。这时,由于排气阀口仍紧贴进排气阀,所以制动缸处于保压状态。直通自动空气制动机原理图3.5.3直通自动空气制动机特点具有阶段制动和阶段缓解。同时,制动管要充到定压,制动缸才能完全缓解。具有制动力不衰减性。即在制动中立位或缓解中立位时,当制动缸压力因漏泄等原因而下降时,三通阀能自动地给予补充压缩空气,保证制动缸压力保持原值。3.6小结空气制动分为直通式空气制动机、自动空气制动机和直通自动空气制动机。其都拥有缓解和保压的状态。直通式空气制动机增压制动、减压缓解,列车别离时不能自动停车。而自动空气制动机则刚好相反。第四章风源系统4.1风源系统的构成风源系统由主空气压缩机组、压力控制器、总风缸等组成。主空气压缩机组〔简称主压缩机组,包括主压缩机及其驱动电动机〕用于生产具有较高压力的压力空气,供全车空气管路系统用。总风缸〔又称主风缸〕是用来储存压力空气的容器。为保证压力稳定的压力空气的充分供给,机车上必须配备容量足够大的总风缸。工作中,总风缸内的压力空气经总风缸管送至制动机系统、控制气路系统和辅助气路系统供使用。空气压力控制器〔即空气压力调节器〕是利用总风缸压力的变化,自动控制空气压缩机的工作,使总风缸压力空气的压力保持在一定范围内。当总风缸内空气压力到达最大规定值时,自动切断主空气压缩机电动机的电源电路,主空气压缩机停顿工作;当总风缸空气压力低于最小规定时,自动闭合主空气压缩机电动机的电源电路,主空气压缩机恢复打风。4.2空气压缩机空气压缩机〔简称空压机〕是用来产生压缩空气〔也称压力空气〕的装置。城轨车辆采用的空气压缩机要求具有噪声低、振动小、构造紧凑、维护方便、环境实用性强的特点,其直流驱动电机已逐渐被交流电机驱动取代。目前,城轨车辆中采用的主要有活塞式空气压缩机和螺杆式空气压缩机两种。4.2.1活塞式空气压缩机由固定机构、运动机构、进排气机构、中间冷却装置和润滑装置等几局部组成。活塞式空气压缩机作用原理图。活塞式空气压缩机的应用广泛、技术成熟,可靠性和稳定性好,不需特殊润滑,性价比具有吸引力。4.2.1螺杆式空气压缩机它的主机是双回转轴容积式压缩机,转子为一对互相啮合的螺杆,螺杆具有非对称啮合型面。主动转子为阳螺杆,从动转子为阴螺杆。螺杆式空气压缩机作用原理图.螺杆式空气压缩机噪声低、振动小,可靠性高和寿命长,维护简单。4.3空气枯燥器空气枯燥器的基本原理是:吸附过程是一个平衡反响,即:在吸附剂〔枯燥剂〕和与其接触的压缩空气之间湿度趋向于平衡,而相对湿度大的压缩空气与吸附剂的外表接触时,由于吸附剂具有大量微孔,与空气的接触面积大,吸附剂可以大量、快速地吸附压缩空气的水蒸气分子,到达枯燥压缩空气的目的;再生过程也是一个平衡反响,用于吸附剂再生的吹扫气体是由较高压力的压缩空气膨胀而来,膨胀时,空气体积增大而压力降低,获得的吹扫气体的相对湿度较低,因而易于“夺〞走吸附剂上已吸附的水蒸气分子,使吸附剂恢复枯燥状态,到达再生的目的。其特点是“压力吸附与无热再生〞。常用的吸附剂有:硅凝胶、氧化铝、活性炭及分子筛等。空气枯燥器一般都是塔式的,有单塔式和双塔式两种。4.3.1单塔式空气枯燥器由油水别离器、枯燥筒、排水阀、电空阀、再生风缸和消声器等组成。特点:吸附剂的吸附作用与再生作用在同一个枯燥筒内进展。空气枯燥器工作过程:空气压缩机工作时,点空阀失电,活塞下方通过排气阀排向大气,活塞在弹簧力作用下关闭排气阀,而空压机输出的压力空气从枯燥塔中部的进口管进入枯燥塔,首先到达油水别离器,当含有油分和机械杂质的压缩空气经过“拉希格〞圈时,油滴吸附在“拉希格〞圈的缝隙中,机械杂质则不能通过“拉希格〞圈的缝隙,这样就将压缩空气中的油分和机械杂质滤去,然后再进入枯燥筒内与吸附剂相遇,吸附剂大量地吸收水分,使从枯燥筒上方输出的压缩空气的相对湿度降低,到达车辆用风系统的要求。单塔式空气枯燥器4.3.2双塔式空气枯燥器由枯燥筒、枯燥器座、双活塞阀、电磁阀四个主要局部组成。特点:采用轮换工作的方法,按一定周期两塔进展功能对换,以到达压缩空气连续进展去油脱水的目的。双塔式空气枯燥器的工作原理:双筒枯燥器工作为枯燥与再生两个工况同时进展,压力空气在一个筒中流过并枯燥时,另外一个筒中的吸附剂即再生。从空气压缩机输出的压力空气首先经过装有“拉希格〞圈的油水别离器,除去空气中的液态油、水、尘埃等。然后,压力空气再流过枯燥筒中的吸附剂,吸附剂吸附压力空气中的水分。一局部枯燥过的压力空气〔〕被分流出来,经过再生节流膨胀后,进入另一个枯燥塔对已吸水饱和的吸附剂进展脱水再生,再生工作后的压力空气经过油水别离器时,再把积聚在“拉希格〞圈上的油、水及机械杂质等从排泄通路排出。双筒式空气枯燥器的作用原理4.4小结风源系统由主空气压缩机组、压力控制器、总风缸等组成。当然最主要的是空气枯燥器,其特点是“压力吸附与无热再生〞。空气枯燥器一般都是塔式的,有单塔式和双塔式两种。单塔式的特点是吸附剂的吸附作用与再生作用在同一个枯燥筒内进展,而双塔式则是采用轮换工作的方法,按一定周期两塔进展功能对换,以到达压缩空气连续进展去油脱水的目的。第五章根基制动装置5.1根基制动装置的概述根基制动装置是指从制动缸活塞推杆到闸瓦之间的一系列杠杆、拉杆、制动梁、吊杆等各种零部件组成的机械装置。它的用途是把作用在制动缸活塞上的压力空气推力增大适当倍数以后,平均地传递给各块闸瓦或闸片,使其转变为压紧车轮踏面或制动盘的机械力,阻止车轮转动而产生制动作用。制动。5.2闸瓦制动工作过程:制动时,制动控制装置根据制动指令使制动缸内产生相应的制动缸压力,该压力通过制动缸使制动缸活塞杆产生推力,经根基制动装置中的一系列杆件的传递、分配,使每块闸瓦都贴靠车轮踏面,并产生闸瓦压力。车轮与闸瓦之间相对滑动,产生摩擦力,最后,通过轮轨关系转化为轮轨之间的制动力。缓解时,制动装置将制动缸内压力空气排出,制动缸活塞在制动缸缓解弹簧的作用下退回,通过各杆件带动闸瓦离开车轮踏面。单侧闸瓦根基制动装置5.3盘形制动5.3.1基本构成由单元制动缸、夹钳装置,闸片和制动盘组成。单元制动缸中包括闸调器,夹钳装置由吊杆、闸片托、杠杆和支点拉板组成。盘形制动装置示意图5.3.2盘形制动的特点〔1〕盘形制动装置代替了闸瓦对车轮踏面的摩擦,因而不存在对车轮的热影响,同时也减少了车轮的消耗,延长了车轮的使用寿命和改善了运行品质,保证了行车安全。〔2〕盘形制动的散热性能对比好,所以摩擦系数稳定,能得到较恒定的制动力。它的热容量允许它具有较高的制动功率。〔3〕由于可以自由地选择制动盘和闸片的材料,使这一对摩擦副具有最正确的制动系数。可以获得较高的摩擦系数,并且对比稳定。因此可以减小闸片压力,制动缸及杠杆的尺寸都可以缩小,减轻了制动装置的重量。〔4〕盘形制动运用经济。一般来说,盘形制动的闸片面积比闸瓦制动的闸瓦面积大,承受的单位面积压力小,它的磨耗率也小。〔5〕盘形制动代替闸瓦制动后,使轮轨间的粘着系数有所降低。5.4小结制动。盘形制动更大程度上代替了闸瓦对车轮踏面的摩擦,减少了车轮的消耗,延长了车轮的使用寿命和改善了运行品质,保证了行车安全。同时散热性能对比好,获得较高的摩擦系数和稳定性且运用经济。第六章防滑原理和防滑控制6.1防滑控制的必要性制动黏着系数是车辆制动设计的基本参数之一。低速制动的黏着系数离散度对比大是我国制动黏着系数分布的特点之一。车轮踏面擦伤问题一直困扰运营部门。轨道交通车辆一般都在较高的速度下行驶,一旦出现车轮踏面擦伤,其危害随运行速度的提高而增加。6.2防止高速制动时车轮滑行的措施欲缩短制动距离,又不发生车轮滑行,必须采取如下措施:按速度控制制动力大小,以充分利用粘着;采用高性能的防滑装置;采用非粘着制动方式。6.3防滑控制技术的开展1908年,J.E.Francis设计了一种最初的防滑装置。1936年,德国RobertBosch公司取得了ABS的专利权。1948年,美国的WestinghouseAirBrake公司开发了铁路机车专用的ABS装置。我国60年代,电气混合式构造列车防滑器。70、80年代以后,微机控制防滑器。6.4防滑控制系统6.4.1防滑系统的基本构造典型的防滑系统主要由控制单元、速度传感器与机械部件防滑阀组成。防滑控制系统通过速度传感器检测列车运行速度和每一个车轮的速度,当两者差值到达一定值时,判断为滑行出现,控制防滑阀动作减小该车轮的制动缸压力,消除滑行。速度传感器:用于检测列车速度和轮对速度的装置,由测速齿轮和速度传感器探头以及电缆线组成。速度传感器的输出是防滑控制中速度计算的根基,速度传感器感应出的脉冲频率与车轮转动速度成正比例。防滑阀:当防滑控制系统不发出防滑指令时,防滑阀对正常的制动和缓解不产生影响;当防滑控制系统发出防滑指令时,通过控制防滑阀的励磁线圈得电使铁芯动作,拍放制动缸压力空气或恢复制动缸压力。防滑控制系统的工作原理框图6.5防滑控制的依据滑行控制时制动力的损失〔1〕速度差判断依据控制:速度差检测是用含假想轴在内的5个轴中最高速度轴〔基准轴速度〕与某一轴的速度差⊿v和速度差率η来判断是否发生滑行。速度差检测是以一辆车内4个轴的速度及制动指令发出后以一定减速度减速的假想轴速度中速度最高值为基准,当车轮的速度比基准值的速度低某一值时,判断为滑行;滑行检测范围减速度判断依据控制:减速度检测根据车轮本身转动速度减小的比例β来判断是否滑行;减速度检测可以对滑行轴单独进展评价,它可以及时地检测到滑行,特别是由摩擦制动造成滑行时,滑行可以用减速度检测的方法有效地检测出来。减速度检测〔3〕一般滑行检测要以减速度检测为主并要和速度差检测一起使用。6.6防滑系统的要求灵敏度高:滑行能够迅速的被检测出来。防滑性能良好:制动效率高、防滑反复动作次数减小、制动距离延长较少、节约压力空气。6.7小结防滑系统的主要构成是控制单元、速度传感器还有机械局部防滑阀。还有防滑控制的依据有速度差判断依据和减速度判断依据及防滑系统的基本要求。第七章制动控制系统7.1概述制动控制系统是空气制动系统的核心,它承受司机或自动驾驶系统〔ATO)的指令,并采集车上各种与制动有关的信号,将指令与各种信号进展计算,得出列车所需的制动力,再向动力制动系统和空气制动系统发出制动信号。动力制动系统进展制动时将实际制动力的等值信号反响给制动控制系统,制动控制系统通过运算协调动力制动和空气制动的制动量。空气制动系统将制动控制系统发来的制动力信号经流量放大后使执行部件产生相应的制动力。这就是制动控制系统的主要功能。7.2构成制动控制系统主要由电子制动控制单元〔EBCU〕、空气制动控制单元〔BCU〕和电气指令单元等组成。它在整个制动系统中的位置如图5-1所示。7.2.1电子制动控制单元电子制动控制单元的主要功能:接收司机控制器或ATO的指令,与牵引控制系统协调列车的制动和缓解。设有紧急制动电路,当紧急制动指令发出时,列车能迅速调用全部空气制动能力实行紧急制动。将接收到的动力〔电气〕制动实际值经EP转换,将电信号转换为气动信号发送给空气制动控制单元。在保证电制动优先作用下,空气制动能自动进展列车制动力的补偿,将制动所需压力传递给根基制动装置,从而使列车制动力保持不变。控制供气系统中空气压缩机组的工作周期,监视主风缸输出压力等参数。如果供气系统中某台设备发生故障,它能及时调用备用设备填补。在列车制动过程中始终收集列车所有轮对速度传感器发来的速度参数,对轮对在制动中出现的滑行进展监视。一旦发现滑行,立即发出防滑信号并采取防滑措施。对列车制动时的各种参数和故障进展监视和记录。故障记录可以在列车回库后用便携式计算机读出。其实,电子制动控制单元在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论