物联网信息安全 课件 第2章 数字签名_第1页
物联网信息安全 课件 第2章 数字签名_第2页
物联网信息安全 课件 第2章 数字签名_第3页
物联网信息安全 课件 第2章 数字签名_第4页
物联网信息安全 课件 第2章 数字签名_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024/7/312.3数字签名2024/7/32数字签名和认证协议数字签名基本概念数字签名的执行方式RSA数字签名数字签名标准2024/7/33数字签名基本概念数字签名概述是密码学中的重要技术之一,是对传统文件手写签名的模拟,用公钥密码实现。提供认证技术,保证消息的来源和完整性。基本方法是消息的产生者添加一个起签名作用的码字(通过计算消息的散列值,并用其私钥加密散列值来生成签名)。2024/7/34数字签名基本概念2024/7/35数字签名基本概念数字签名的基本功能数字签名将消息与发起实体相关联,由签名算法和相应验证算法组成。数字签名的组成签名过程:包括数字签名生成算法,以及某种将数据编码成可签名消息的方法。验证过程:包括验证算法,以及某种将消息恢复数据的解码方法。2024/7/36数字签名基本概念数学定义2024/7/37数字签名基本概念数字签名的安全性要求2024/7/38数字签名的执行方式直接数字签名(非对称密码):直接数字签名是只涉及到通信双方的数字签名。数字签名方法本质上是加密算法的逆应用:发送方用自己的私钥对消息加密生成签名接收方收到消息后用发送方的公钥进行解密验证签名。攻击者只知道发送方的公钥,不能伪造签名,从而起到对签名认证的效果。2024/7/39直接数字签名的实现方案实现方案1BobAlice签名验证公共信道SKBPKBsigsig只有B知道SKB,能用它对消息进行签名。传输中无法篡改。任何第三方可以用PKB验证签名。2024/7/310直接数字签名的实现方案改进措施采用对称密码体制对签名进行加密保护只有知道该密钥的人才能对签名进行解密,进而可以验证签名并获得消息m的内容。

AB:Ek(ESK(m))MSEDVKKPKSKM2024/7/311直接数字签名的实现方案实现方案2AB:m||ESK(h(m))Alice签名验证公共信道SKBPKBsigsigh(m)数字签名提供了可认证功能,由于h(m)具有数据压缩功能,使得签名处理的内容减少,速度加快。2024/7/312直接数字签名的实现方案缺点:方案的有效性依赖于发送方私钥的安全性2024/7/313数字签名基本概念可仲裁数字签名参与者包括:通信双方和仲裁者。仲裁者对发送的签名进行测试,检查其来源和内容,然后加上时间戳,并与已被仲裁者通过验证的签名一起发送给接收方。仲裁者扮演了裁判的角色这种签名的前提是参与者相信仲裁的公平公正。2024/7/314可仲裁数字签名可仲裁数字签名的分类 条件:仲裁者绝对诚实可信对称密钥加密方式,仲裁者A可以阅读消息。对称密钥加密方式,仲裁者A不能阅读消息。公钥加密方式,仲裁者A不能阅读消息。2024/7/315对称加密,仲裁者可以获知消息X与A之间共享密钥Kxa,Y与A之间共享密钥KYa。X计算m

的哈希值H(m),用X的身份标示符IDX和H(m)构成签名EKxa[IDX||H(m)],并将消息和签名经Kxa

加密后发送给A,A解密签名,用H(m)验证m

后将计算并发送Y解密A发来的信息并将m

和签名并验证。2024/7/316对称加密,仲裁者不获知消息在该方案中实体X和Y之间共享密钥Kxy。X将标示符IDX、密文h(m)以及对IDX和h[EKxy(m)]用Kxa加密后发送给A。A解密签名并验证签名,此时A只能验证消息的密文而不能读取其内容。然后A将来自X的所有信息加上时间戳并用Kya

加密后发送给Y。Y通过解密即可验证。2024/7/317双密钥加密方式X对消息

m

进行双重加密:先用自己的私钥SKx,然后用Y的公钥

PKy

形成一个签名的保密的消息,然后将该消息以及X的身份标识IDx

一起用

SKx

签名后与IDx

一起发送给A。A检查X的公钥/私钥对是否有效,有效则认证消息。并将包含

IDX

、双重加密的消息和时间戳一起用

Ska签名后发送给Y.双重加密方式对A以及除Y以外的其他人都是安全的,且通信之前双方无需共享任何信息。2024/7/318RSA数字签名签名发送者签名接收者原始消息mSHA-1H(m)RSA加密算法A的私钥消息m摘要RSA解密算法消息m摘要A的公钥SHA-1H(m)H’(m)?2024/7/319RSA数字签名RSA密码和数字签名每个实体生成各自RSA公钥和相应的私钥,对A:2024/7/320RSA数字签名将RSA密码体制用于数字签名中2024/7/321RSA数字签名RSA签名方案Alice使用RSA解密规则dk为消息x

签名。因为dk

=sigk

是保密的,所以Alice是能够产生这一签名的唯一的人。验证算法使用RSA加密规则ek。任何人都能验证签名,因为ek是公开的。2024/7/322RSA数字签名已知发送方的密钥:PU=(n,e)=(143,103),d=7假设被签名的消息m=5,则求出该消息的签名,并验证签名是否正确。2024/7/323基于离散对数的数字签名ElGamal签名方案该方案是由1985年提出的签名方案,其变型已被美国国家标准技术研究所采纳为数字签名算法(DSA)。DSA同时吸收了被称为schnorr签名方案的一些思想。ElGamal签名方案是一个随机化签名方案,他对任意长度的二元消息生成数字签名,且需要一个杂凑函数h:{0,1}Zp,其中p是大素数。2024/7/324基于离散对数的数字签名ElGamal签名方案的密钥生成每个实体产生各自的公钥和相应私钥,实体A:2024/7/325基于离散对数的数字签名ElGamal签名生成2024/7/326基于离散对数的数字签名ElGamal签名验证2024/7/327ElGamal签名举例2024/7/328数字签名标准数字签名算法1991年最早提出1993年做了一些修改1996年第二次修改2000年颁布该标准的扩充版FIPS186-2,包含了RSA签名算法和椭圆曲线数字签名算法。DSS只提供签名,不能象RSA那样用于加密和密钥分配。2024/7/329基于离散对数的数字签名DSS中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论