2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省徐州市西苑中学九年级数学第一学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各数:-2,,,,,,0.3010010001…,其中无理数的个数是()个.A.4 B.3 C.2 D.12.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.3.已知关于x的一元二次方程x2+3x﹣2=0,下列说法正确的是()A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.没有实数根 D.无法确定4.在下列函数图象上任取不同两点P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是()A.y=﹣2x+1(x<0) B.y=﹣x2﹣2x+8(x<0)C.y=(x>0) D.y=2x2+x﹣6(x>0)5.在△ABC中,∠C=90°,tanA=,那么sinA的值是()A. B. C. D.6.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.57.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°9.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A.7 B.8 C.9 D.1010.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或1二、填空题(每小题3分,共24分)11.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________12.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.13.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.14.计算:=.15.如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于点,点关于直线的对称点恰好在反比例函数的图象上,则的值是__________.16.已知一次函数y1=x+m的图象如图所示,反比例函数y2=,当x>0时,y2随x的增大而_____(填“增大”或“减小”).17.在中,,,则______________.18.已知二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1),则y1_____y1.(填“>”“<”或“=”)三、解答题(共66分)19.(10分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.20.(6分)如图,在平面直角坐标系xOy中,双曲线与直线y=﹣2x+2交于点A(﹣1,a).⑴求k的值;⑵求该双曲线与直线y=﹣2x+2另一个交点B的坐标.21.(6分)如图,在平面直角坐标系中,A,B.(1)作出与△OAB关于轴对称的△;(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?22.(8分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值23.(8分)如图所示,在中,,,,点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.连接,设运动时间为.(1)当为何值时,?(2)设的面积为,求与的函数关系式,并求出当为何值时,取得最大值?的最大值是多少?24.(8分)如图,在中,,正方形的顶点分别在边、上,在边上.(1)点到的距离为_________.(2)求的长.25.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;动点在轴上,轴交反比例函数的图象于点.若.求点的坐标.26.(10分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?

参考答案一、选择题(每小题3分,共30分)1、B【分析】无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,也就是说它是无限不循环小数.常见的无理数有大部分的平方根、π等.【详解】根据无理数的定义,下列各数:-2,,,,,,0.3010010001…,其中无理数是:,,0.3010010001…故选:B【点睛】考核知识点:无理数.理解无理数的定义是关键.2、D【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【详解】从上面看,图2的俯视图是正方形,有一条对角线.

故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3、B【分析】根据一元二次方程的构成找出其二次项系数、一次项系数以及常数项,再根据根的判别式△=17>0,即可得出方程有两个不相等的实数根,此题得解.【详解】解:在一元二次方程x2+3x﹣2=0中,二次项系数为1,一次项系数为3,常数项为﹣2,∵△=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有两个不相等的实数根.故选:B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4、D【分析】据各函数的增减性依次进行判断即可.【详解】解:A、∵k=﹣2<0∴y随x的增大而减小,即当x1>x2时,必有y1<y2∴当x<0时,(x2﹣x1)(y2﹣y1)<0,故A选项不符合;B、∵a=﹣1<0,对称轴为直线x=﹣1,∴当﹣1<x<0时,y随x的增大而减小,当x<﹣1时y随x的增大而增大,∴当x<﹣1时:能使(x2﹣x1)(y2﹣y1)>0成立,故B选项不符合;C、∵>0,∴当x>0时,y随x的增大而减小,∴当x>0时,(x2﹣x1)(y2﹣y1)<0,故C选项不符合;D、∵a=2>0,对称轴为直线x=﹣,∴当x>﹣时y随x的增大而增大,∴当x>0时,(x2﹣x1)(y2﹣y1)>0,故D选项符合;故选:D.【点睛】本题考查的知识点是一次函数、反比例函数图象的性质以及二次函数图象的性质,掌握二次函数及反比例函数的图象性质是解此题的关键.5、C【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tanA==,BC=x,AC=3x,由勾股定理,得AB=x,sinA==,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.6、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.7、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.8、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.9、B【分析】连接OQ、OP,作于H,如图,则OH=3,根据切线的性质得,利用勾股定理得到,根据垂线段最短,当OP=OH=3时,OP最小,于是PQ的最小值为,即可得到正方形PQRS的面积最小值1.【详解】解:连接OQ、OP,作于H,如图,则OH=3,∵PQ为的切线,∴在Rt中,,当OP最小时,PQ最小,正方形PQRS的面积最小,当OP=OH=3时,OP最小,所以PQ的最小值为,所以正方形PQRS的面积最小值为1故选B10、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.二、填空题(每小题3分,共24分)11、【分析】根据菱形的判定方法直接就可得出推出菱形的概率.【详解】根据“对角线互相垂直的平行四边形是菱形”直接判断①符合题意;根据“一组邻边相等的平行四边形是菱形”可直接判断②符合题意;根据“对角线相等的平行四边形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合题意;推出菱形的概率为:.故答案为.【点睛】本题主要考查菱形的判定及概率,熟记菱形的判定方法是解题的关键,然后根据概率的求法直接得出答案.12、3或1【解析】分圆运动到第一次与AB相切,继续运算到第二次与AB相切两种情况,画出图形进行求解即可得.【详解】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=1,故答案为3或1.【点睛】本题考查了切线的性质、含30度角的直角三角形的性质,会用分类讨论的思想解决问题是关键,注意数形结合思想的应用.13、6【分析】从表中的统计数据可知,摸到红球的频率稳定在0.33左右,根据红球的概率公式得到相应方程求解即可;【详解】由统计图,知摸到红球的频率稳定在0.33左右,∴,经检验,n=6是方程的根,故答案为6.【点睛】此题主要考查频率与概率的相关计算,熟练掌握,即可解题.14、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.15、【分析】设直线l与y轴交于点M,点关于直线的对称点,连接MB′,根据一次函数解析式确定∠PMO=45°及M点坐标,然后根据A点坐标分析B点坐标,MB的长度,利用对称性分析B′的坐标,利用待定系数法求反比例函数解析式,然后将B′坐标代入解析式,从而求解.【详解】解:直线l与y轴交于点M,点关于直线的对称点,连接MB′由直线中k=1可知直线l与x轴的夹角为45°,∴∠PMO=45°,M(0,b)由,过点作轴于点∴B(0,2),MB=b-2∴B′(2-b,b)把点代入中解得:k=-4∴∵恰好在反比例函数的图象上把B′(2-b,b)代入中解得:(负值舍去)∴故答案为:【点睛】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,用含b的代数式表示B′点坐标是解题的关键.16、减小.【分析】根据一次函数图象与y轴交点可得m<2,进而可得2-m>0,再根据反比例函数图象的性质可得答案.【详解】根据一次函数y1=x+m的图象可得m<2,∴2﹣m>0,∴反比例函数y2=的图象在一,三象限,当x>0时,y2随x的增大而减小,故答案为:减小.【点睛】此题主要考查了反比例函数的性质,以及一次函数的性质,关键是正确判断出m的取值范围.17、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.18、>【分析】根据二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(1,y1)和二次函数的性质可以判断y1和y1的大小关系.【详解】解:∵二次函数y=ax1+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,∴y1>y1,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题(共66分)19、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)将A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系数法即可求得抛物线的解析式,再配方即可得到顶点D的坐标,根据y=0,可得点B的坐标;(2)根据BC的解析式和抛物线的解析式,设P(x,x2﹣2x﹣3),则M(x,x﹣3),表示PM的长,根据二次函数的最值可得:当x=时,PM的最大值,此时P(,﹣),进而确定F的位置:在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,当N、F、H三点共线时,如图2,FH+FN最小,即PH+HF+CF的值最小,根据含30°角的直角三角形的性质,即可得结论;(3)先根据旋转确定Q的位置,与点A重合,根据菱形的判定画图,分4种情况讨论:分别以DQ为边和对角线进行讨论,根据菱形的边长相等和平移的性质,可得点S的坐标.【详解】(1)把A(﹣1,0),点C(0,﹣3)代入抛物线y=x2+bx+c,得:,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D(1,﹣4),当y=0时,x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=x﹣3,设P(x,x2﹣2x﹣3),则M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,当x=时,PM有最大值,此时P(,﹣),在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,∴FN=CF,当N、F、H三点共线时,如图1,FH+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋转得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q与A重合,即Q(﹣1,0)分4种情况:①如图2,以QD为边时,由菱形和抛物线的对称性可得S(3,0);②如图3,以QD为边时,由勾股定理得:AD=,∵四边形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如图4,同理可得:S(﹣1,2);④如图5,作AD的中垂线,交对称轴于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中点N的坐标为(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);综上,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【点睛】本题主要考查二次函数和几何图形的综合,添加合适的辅助线构造含30°角的直角三角形,利用菱形的判定定理,进行分类讨论,是解题的关键.20、(1);(2)B(2,-2)【分析】(1)将A坐标代入一次函数解析式中求得a的值,再将A坐标代入反比例函数解析式中求得m的值;(2)联立解方程组,即可解答.【详解】⑴把点A(-1,a)代入得把点A(-1,4)代入得:⑵解方程组,解得:,∴B(2,-2).【点睛】此题主要考查了反比例函数与一次函数的交点问题,掌握求两函数图象交点的方法是解答的关键,会解方程(组)是解答的基础.21、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1B2的垂直平分线,因此可以判断两个图形关于直线对称.【详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-4),∴直线B1B2的解析式为,∴直线OB为直线B1B2的垂直平分线,∴两个图形关于直线对称,即△可由△沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到.【点睛】本题考查了旋转的坐标变换,做旋转图形,轴对称图形的判断,是图形变化中的重点题型,关键是先作出对应点,然后进行连线.22、(1);(2)【分析】(1)由题意直接利用特殊角的三角函数值代入进行计算即可;(2)根据题意利用公式cos(180°-a)=-cosa进行变形,并代入特殊角的三角函数值进行计算即可.【详解】解:(1)sin30°tan45°-cos30°tan30°+sin45°tan60°==.(2)由题意cos(180°﹣a)=﹣cosa可知,cos120°=cos(180°﹣60°)=﹣cos60°=.【点睛】本题考查实数的混合运算,解题的关键是记住特殊角的三角函数值进行代入求值即可.23、(1)(2)S=−(t−)2+,t=,S有最大值,最大值为.【分析】(1)利用分线段成比例定理构建方程即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题即可.【详解】(1)∵PQ⊥AC,∴∠AQP=∠C=90°,∴PQ∥BC,∴,在Rt△ACB中,AB=∴,解得t=,∴t为时,PQ⊥AC.(2)如图,作PH⊥AC于H.∵PH∥BC,∴,∴,∴PH=(5−t),∴S=•AQ•PH=×t×(5−t)=−t2+t=−(t−)2+,∵−<0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论