辽宁省大石桥市水源镇2024年中考数学四模试卷含解析_第1页
辽宁省大石桥市水源镇2024年中考数学四模试卷含解析_第2页
辽宁省大石桥市水源镇2024年中考数学四模试卷含解析_第3页
辽宁省大石桥市水源镇2024年中考数学四模试卷含解析_第4页
辽宁省大石桥市水源镇2024年中考数学四模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大石桥市水源镇2024年中考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-102.计算-5x2-3x2的结果是()A.2x2 B.3x2 C.-8x2 D.8x23.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A. B. C. D.4.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根5.若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,36.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y33下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A.4个 B.3个 C.2个 D.1个7.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度8.-2的绝对值是()A.2 B.-2 C.±2 D.9.如图所示:有理数在数轴上的对应点,则下列式子中错误的是()A. B. C. D.10.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④ B.①④ C.②③④ D.①②③二、填空题(共7小题,每小题3分,满分21分)11.因式分解.12.估计无理数在连续整数___与____之间.13.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.14.的算术平方根是_____.15.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm.支架CD,CE与立柱AB的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CD⊥FG,CE⊥MN,则两个转盘的最低点F,N距离地面的高度差为_____cm.(结果保留根号)16.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.17.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).19.(5分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)20.(8分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.21.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.22.(10分)已知,求代数式的值.23.(12分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.24.(14分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据多项式乘以多项式的法则进行计算即可.【详解】x-2x+5故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.2、C【解析】

利用合并同类项法则直接合并得出即可.【详解】解:故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.3、B【解析】

先找出滑雪项目图案的张数,结合5张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.4、A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.5、C【解析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.6、B【解析】

(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,∴,解得∴abc<0,故正确;(2)∵y=-x2+x+3,∴对称轴为直线x=-=,所以,当x>时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.7、C【解析】

Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化8、A【解析】

根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大9、C【解析】

从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A、两数相乘,同号得正,ab>0是正确的;

B、同号相加,取相同的符号,a+b<0是正确的;

C、a<b<0,,故选项是错误的;

D、a-b=a+(-b)取a的符号,a-b<0是正确的.

故选:C.【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.10、D【解析】

∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵=,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.12、34【解析】

先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:∵,∴,∴无理数在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.13、【解析】

先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.14、【解析】∵=8,()2=8,∴的算术平方根是.故答案为:.15、10【解析】

作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解决问题.【详解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由题意△QDF,△QCH都是等腰直角三角形,四边形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD−DQ=60−30=30cm,∴FJ=QH=15cm,∵AC=AB−BC=125−25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴两个转盘的最低点F,N距离地面的高度差为=(15+100)-(100+5)=10故答案为:10【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16、有两个不相等的实数根.【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.详解:∵a=2,b=3,c=−2,∴∴一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.17、1【解析】试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.考点:三角形相似的应用.三、解答题(共7小题,满分69分)18、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.19、(1)2;(2)宣传牌CD高(20﹣1)m.【解析】试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:点B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.20、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)∵点A(m,2)在双曲线上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,设P(n,0),则有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.21、见解析【解析】

根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.【详解】证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.22、12【解析】解:∵,∴.∴.将代数式应用完全平方公式和平方差公式展开后合并同类项,将整体代入求值.23、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.【解析】试题分析:(1)、首先设甲种材料每千克x元,乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.试题解析:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:x+y=602y+3y=155解得:答:甲种材料每千克25元,乙种材料每千克35元.(2)生产B产品a件,生产A产品(60-a)件.依题意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值为非负整数∴a=39、40、41、42∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件(3)、答:生产A产品21件,B产品39件成本最低.设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W随a增大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论