江苏省苏州市同里中学2025届九上数学期末检测试题含解析_第1页
江苏省苏州市同里中学2025届九上数学期末检测试题含解析_第2页
江苏省苏州市同里中学2025届九上数学期末检测试题含解析_第3页
江苏省苏州市同里中学2025届九上数学期末检测试题含解析_第4页
江苏省苏州市同里中学2025届九上数学期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市同里中学2025届九上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.2.下列方程中,关于x的一元二次方程的是()A.x+=2 B.ax2+bx+c=0C.(x﹣2)(x﹣3)=0 D.2x2+y=13.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.4.下列事件属于随机事件的是()A.抛出的篮球会下落B.两枚骰子向上一面的点数之和大于1C.买彩票中奖D.口袋中只装有10个白球,从中摸出一个黑球5.已知在中,,,那么下列说法中正确的是()A. B. C. D.6.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)()A. B. C. D.7.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110° B.140° C.35° D.130°8.抛物线y=x2+bx+c过(-2,0),(2,0)两点,那么抛物线对称轴为()A.x=1 B.y轴 C.x=-1 D.x=-29.在Rt△ABC中,∠C=90°,若sin∠A=,则cosB=()A. B. C. D.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于()A. B.2 C.1.5 D.二、填空题(每小题3分,共24分)11.边心距为的正六边形的半径为_______.12.在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则是_______.13.如图,抛物线和抛物线的顶点分别为点M和点N,线段MN经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是__________,MN平移到PQ扫过的阴影部分的面积是__________.14.已知反比例函数的图象经过点,则这个函数的表达式为__________.15.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.16.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.17.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.18.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).三、解答题(共66分)19.(10分)某地2016年为做好“精准扶贫”,投入资金1000万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1250万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于400万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.(6分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.21.(6分)画图并回答问题:(1)在网格图中,画出函数与的图像;(2)直接写出不等式的解集.22.(8分)如图1,分别是的内角的平分线,过点作,交的延长线于点.(1)求证:;(2)如图2,如果,且,求;(3)如果是锐角,且与相似,求的度数,并直接写出的值.23.(8分)计算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.24.(8分)如图,在△ABC中,D为AB边上一点,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的长.25.(10分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)26.(10分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.

参考答案一、选择题(每小题3分,共30分)1、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.2、C【分析】利用一元二次方程的定义判断即可.含有一个未知数,并且未知数的最高次数是2次的整式方程是一元二次方程.【详解】解:A、x+=2不是整式方程,不符合题意;B、ax2+bx+c=0不一定是一元二次方程,不符合题意;C、方程整理得:x2﹣5x+6=0是一元二次方程,符合题意;D、2x2+y=1不是一元二次方程,不符合题意.故选:C.3、B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.4、C【解析】根据随机事件,必然事件,不可能事件概念解题即可.【详解】解:A.抛出的篮球会下落,是必然事件,所以错误,B.两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C.买彩票中奖.是随机事件,正确,D.口袋中只装有10个白球,从中摸出一个黑球,,是不可能事件,所以错误,故选C.【点睛】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.5、A【分析】利用同角三角函数的关系解答.【详解】在Rt△ABC中,∠C=90°,,则cosA=

A、cosB=sinA=,故本选项符合题意.

B、cotA=.故本选项不符合题意.

C、tanA=.故本选项不符合题意.

D、cotB=tanA=.故本选项不符合题意.

故选:A.【点睛】此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.6、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论.【详解】故选:B.【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键.7、B【解析】根据圆周角定理可得∠ADC=2∠ABC=140°,故选B.8、B【分析】由二次函数图像与x轴的交点坐标,即可求出抛物线的对称轴.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(2,0),

∴这条抛物线的对称轴是:x=,即对称轴为y轴;故选:B.【点睛】本题考查了抛物线与x轴的交点问题.对于求抛物线的对称轴的题目,可以用公式法,也可以将函数解析式化为顶点式求得,或直接利用公式x=求解.9、A【分析】根据正弦和余弦的定义解答即可.【详解】解:如图,在Rt△ABC中,∠C=90°,∵sinA=,cosB=,∴cosB=.故选:A.【点睛】本题考查了锐角三角函数的定义,属于应知应会题型,熟练掌握锐角三角函数的概念是解题关键.10、B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=∠ACB=30°,∴BE=CE,∵AB∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=AE,∴=2,故选B.【点睛】本题考查翻折变换(折叠问题).二、填空题(每小题3分,共24分)11、8【分析】根据正六边形的性质求得∠AOH=30°,得到AH=OA,再根据求出OA即可得到答案.【详解】如图,正六边形ABCDEF,边心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即该正六边形的半径为8,故答案为:8.【点睛】此题考查正六边形的性质,直角三角形30度角的性质,勾股定理,正确理解正六边形的性质是解题的关键.12、或【分析】分两种情况,根据相似三角形的性质计算即可.【详解】解:①当时,∵四边形ABCD是平行四边形,,,②当时,同理可得,,故答案为或.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.13、(1,5)16【分析】先将M、N两点坐标分别求出,然后根据N点的移动规律得出M点的横坐标向右移动2个单位长度,进一步即可求出M点坐标;根据二次函数图像性质我们可以推断出MN平移到PQ扫过的阴影部分的面积等同于菱形MNQP,之后进一步求出相关面积即可.【详解】由题意得:M点坐标为(-1,1),N点坐标为(1,-3),∵点Q横坐标为3,∴N点横坐标向右平移了2个单位长度,∴P点横坐标为-1+2=1,∴P点纵坐标为:1+2+2=5,∴P点坐标为:(1,5),由题意得:Q点坐标为:(3,1),∴MQ平行于x轴,PN平行于Y轴,∴MQ⊥PN,∴四边形MNQP为菱形,∴菱形MNQP面积=×MQ×PN=16,∴MN平移到PQ扫过的阴影部分的面积等于16,故答案为:(1,5),16.【点睛】本题主要考查了二次函数图像的性质及运用,熟练掌握相关概念是解题关键.14、【分析】把点的坐标代入根据待定系数法即可得解.【详解】解:∵反比例函数y=经过点M(-3,2),

∴2=,

解得k=-6,

所以,反比例函数表达式为y=.

故答案为:y=.【点睛】本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.15、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【点睛】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.16、1【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17、50°【解析】由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.解:∵CC/∥AB,∴∠C/CA=∠CAB=65°,∵由旋转的性质可知:AC=AC/,∴∠ACC/=∠AC/C=65°.∴∠CAC/=180°-65°-65°=50°.∴∠BAB/=50°.18、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.三、解答题(共66分)19、(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)今年该地至少有1400户享受到优先搬迁租房奖励.【分析】(1)根据”2016年投入资金年投入资金”列方程求解即可;(2)根据题意,享受奖励的搬迁户分为前1000户和1000户之后的部分,可以设搬迁户总数为,则有前1000户享受奖励总额+1000户之后享受奖励综合≥400万元,据此可解.【详解】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1000(1+x)2=1250+1000,解得:x=0.5或x=﹣2.5(舍),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥4000000,解得:a≥1400,答:今年该地至少有1400户享受到优先搬迁租房奖励.【点睛】本题主要考查了一元二次方程和一元一次不等式的应用,认真审题,找准数量关系列出方程是解答关键.20、(1)顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)AB=.【分析】(1)先把抛物线解析式配方为顶点式,即可得到结果;(2)求出当时的值,即可得到结果.【详解】解:(1)由配方法得y=(x+1)2-3则顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)令y=0,则0=x2+x﹣解得x1=-1+x2=-1-则A(-1-,0),B(-1+,0)∴AB=(-1+)-(-1-)=21、(1)画图见解析;(2)x<-1或x>3【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)在图象中代表着抛物线在直线上方的图象∴解集是x<-1或x>3【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.22、(1)证明见解析;(2);(3)当,;当,.【分析】(1)先利用角平分线的性质,得,,再利用外角、三角形内角和进行换算即可;(2)延长AD,构造平行相似,得到,再按条件进行计算;(3)利用△ABC与△ADE相似,得到,所以得到或,再利用三角函数求值.【详解】(1)如图1中∵∴,∵AD平分∴,同理得∵,∴∴(2)延长AD交BC于点F∵∴BE平分∠ABC∴∴∴∴,∵∴(3)∵△ABC与△ADE相似,∴∠ABC中必有一个内角和为90°∵∠ABC是锐角∴当时∵∴∵∴,∵分别是的内角的平分线∴∴∵∴代入解得②当时∵△ABC与△ADE相似∴∵分别是的内角的平分线∴∴此时综上所述,当,;当,【点睛】本题考查了相似三角形的综合题,掌握相似三角形的判定和性质、平行线的判定和性质以及锐角三角函数是解题的关键.23、(1)-2(2)【分析】(1)根据特殊角的三角函数值即可求解;(2)根据负指数幂、零指数幂及特殊角的三角函数值即可求解.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论