版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.4二项式定理一、单选题1.的绽开式中的系数为(
)A.15 B. C.60 D.【答案】C【分析】依据二项式绽开公式求解即可.【解析】绽开通项公式为,令得,所以,所以的系数为60,故选:C.2.绽开式中,的系数为()A. B.320 C. D.240【答案】A【分析】依据二项式的通项公式进行求解即可.【解析】因为,所以通项公式为:,令,所以,设二项式的通项公式为:,令,所以,因此项的系数为:,故选:A.3.的绽开式中的系数为(
)A.30 B.40 C.70 D.80【答案】A【分析】求出的绽开式中含的项,再求出其系数即可.【解析】因为的绽开式中含的项为,所以的系数为.故选:A.4.,则(
)A.1 B.3 C.0 D.【答案】C【分析】依据绽开式,利用赋值法取即得.【解析】因为,令,可得.故选:C.5.的二项绽开式中,奇数项的系数和为(
)A. B. C. D.【答案】C【解析】设,令、计算即可求解.【解析】设,令可得,令可得,两式相加可得:,所以奇数项系数之和为,故选:C.6.若的绽开式有9项,则自然数的值为(
)A.7 B.8 C.9 D.10【答案】B【分析】依据二项式绽开式的项数即可得解.【解析】解:因为的绽开式共有项,所以,所以,故选:B.7.关于的绽开式中共有7项,下列说法中正确的是(
)A.绽开式中二项式系数之和为32 B.绽开式中各项系数之和为1C.绽开式中二项式系数最大的项为第3项 D.绽开式中系数最大的项为第4项【答案】B【分析】依题意可得,再依据二项式系数和为推断A,令即可求出绽开式系数和,即可推断B,依据二项式系数的特征推断C,再求出绽开式系数最大值,即可推断D;【解析】解:因为二项式的绽开式中共有7项,所以,选项A:全部项的二项式系数和为,故A不正确;选项B:令,则,所以全部项的系数的和为1,故B正确;选项C:二项式系数最大的项为第4项,故C不正确;选项D:二项式的绽开式的通项为,故系数为,系数的最大项只从中选择,当时,当时,当时,当时,故当时系数最大,所以绽开式中系数最大的项为第3项,故D不正确.故选:B8.在的绽开式中,只有第4项的二项式系数最大,则(
)A.5 B.6 C.7 D.8【答案】B【分析】当n为偶数时,绽开式中第项二项式系数最大,当n为奇数时,绽开式中第和项二项式系数最大.【解析】因为只有一项二项式系数最大,所以n为偶数,故,得.故选:B9.二项式的绽开式中系数为有理数的项共有(
)A.6项 B.7项 C.8项 D.9项【答案】D【分析】由二项式的通项公式结合有理项的性质即可求解.【解析】二项式的通项,若要系数为有理数,则,,,且,即,,易知满意条件的,故系数为有理数的项共有9项.故选:D10.在的绽开式中,除常数项外,其余各项系数的和为(
)A.63 B.-517 C.-217 D.-177【答案】B【解析】利用赋值法令求各项系数的和,再利用生成法求常数项,再求其余各项系数的和.【解析】常数项是,令求各项系数和,,则除常数项外,其余各项系数的和为.故选:B11.在的二项绽开式中,称为二项绽开式的第项,其中r=0,1,2,3,……,n.下列关于的命题中,不正确的一项是(
)A.若,则二项绽开式中系数最大的项是.B.已知,若,则二项绽开式中第2项不大于第3项的实数的取值范围是.C.若,则二项绽开式中的常数项是.D.若,则二项绽开式中的幂指数是负数的项一共有12项.【答案】D【分析】A选项:依据系数最大列不等式,解不等式即可;B选项:依据题意列不等式,然后分和两种状况解不等式即可;C选项:令,解方程即可;D选项:令,解不等式即可.【解析】A选项:令,解得,所以,所以A正确;B选项:,整理可得,当时,不等式恒成立;当时,解得,所以,故B正确;C选项:令,解得,所以常数项为,故C正确;D选项:令,解得,所以可取,共11项,故D错.故选:D.12.“杨辉三角”是中国古代数学文化的珍宝之一,它揭示了二项式绽开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论正确的是(
)A.B.在第2024行中第1011个数最大C.第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D.第34行中第15个数与第16个数之比为2:3【答案】C【分析】A选项由及即可推断;B选项由二项式系数的增减性即可推断;C选项由及即可推断;D选项干脆计算比值即可推断.【解析】由可得,故A错误;第2024行中第1011个数为,故B错误;,故C正确;第34行中第15个数与第16个数之比为,故D错误.故选:C.二、多选题13.已知二项式的绽开式中各项系数的和为,则下列结论正确的是(
)A.B.绽开式中二项式系数和为128C.绽开式中项的系数为21D.绽开式中有3项有理项【答案】BD【分析】依据各项系数的和为,令即可得,可得选项A错误,二项式系数和即,即可推断选项B的正误,依据二项式定理写出通项,使的幂次为1,解得项数,即可得选项C的正误,使通项中的幂次为有理数即可推断选项D的正误.【解析】解:由题可得,不妨令,得,所以,故选项A错误;绽开式中二项式系数和为,故选项B正确;绽开式的通项公式为,令,解得,绽开式中项的系数为,故选项C错误;绽开式的通项公式为,当时,为有理项,故选项D正确.故选:BD14.已知,则(
)A. B.C. D.【答案】AC【分析】对AB,依据二项式公式求解对应项的系数求解即可;对CD,利用赋值法分别求与和推断即可.【解析】对A,为绽开式中最高次项系数,只能由绽开式的最高次项相乘,故为,即,故A正确;对B,,故,故B错误;对C,令,则,即,令,则,即.故,故C正确;对D,令,则,结合C,,故...①又...②,①+②可得,故,,故,故D错误.故选:AC15.若,,则(
)A.B.C.D.【答案】ABD【分析】依据给定条件,利用二项式定理及赋值法逐项分析、计算推断作答.【解析】因,则,A正确;绽开式的通项,,当为奇数时,,当为偶数时,,则,B正确;,而,则,C不正确;,而,则,D正确.故选:ABD16.若,则正确的是(
)A.B.C.D.【答案】BC【分析】利用二项式定理,结合赋值法逐项分析计算作答.【解析】依题意,令,,A不正确;,,则,B正确;明显,,则,C正确;,D不正确.故选:BC三、填空题17.在绽开式中,含的项的系数是___________.【答案】720【分析】依据乘法支配律以及组合数的计算求得正确答案.【解析】依据乘法支配律可知,含的项的系数是:.故答案为:18.在的绽开式中,只有第5项的二项式系数最大,则绽开式中含项的系数为___________【答案】【分析】先由二项式系数最大确定,再由通项公式求含项的系数即可.【解析】由只有第5项的二项式系数最大可得:.∴通项公式,令,解得.∴绽开式中含项的系数为.故答案为:.19.已知,则的值为______.【答案】【分析】利用二项式绽开式的通项进行求解即可.【解析】的绽开式通项为,所以,故答案为:20.已知集合,记集合的非空子集为、、、,且记每个子集中各元素的乘积依次为、、、,则的值为___________.【答案】【分析】构造函数,设该函数绽开式中全部项系数之和为,则,利用赋值法可求得结果.【解析】设集合的十个元素分别为、、、..设函数绽开式中全部项系数之和为,则,因为,所以.故答案为:.【点睛】关键点点睛:本题主要考查的集合子集的判定,构造函数求解,属于难题.本题的关键是依据二项定理的推导过程构造出函数,这种转化思想是本题的难点.四、解答题21.在二项式的绽开式中,求:(1)二项式系数之和;(2)各项系数之和;【答案】(1)(2)【分析】(1)利用绽开式的二项式系数和可求得结果;(2)令可求得绽开式各项系数之和.(1)解:由题意可知,绽开式的二项式系数之和为.(2)解:由题意可知,绽开式的各项系数之和为.22.已知二项式的绽开式中共有11项.(1)求绽开式的第3项的二项式系数;(2)求绽开式中含的项.【答案】(1)(2)【分析】(1)先依据项数求出,再求解第3项的二项式系数;(2)利用通项公式求解含的项.(1)因为二项式的绽开式中共有11项,所以,所以绽开式的第3项的二项式系数为.(2)的绽开式的通项公式为;令可得,所以绽开式中含的项为.23.已知()的绽开式中前项的二项式系数之和等于.(1)求的值;(2)若绽开式中的一次项的系数为,求实数的值.【答案】(1);(2).【分析】(1)由题设有,结合组合数公式整理成关于n的一元二次方程求解即可.(2)由(1)写出二项式绽开式通项,进而推断含的项,结合其系数列方程求的值.(1)由题设,,整理得,解得(舍)或;(2)由(1)知:二项式绽开式通项为,当时为含的项,故,解得.24.已知,其中.(1)若,,求的值;(2)若,,求的值.【答案】(1)2(2)【分析】(1)结合二项式的绽开式的通项公式得,令即可求出结果;(2)构造,分别求出和的值,进而可求出结果.(1),,,令,得,∴.(2)若,,记,,,∴25.已知(为正整数)的二项绽开式中.(1)若,求全部项的系数之和;(2)若,求绽开式中的有理项的个数;(3)若,求系数最大的项.【答案】(1)(2)11(3)【分析】(1)由题意求出,令中,即可得出答案.(2)求出,写出的通项,要使绽开式为有理项,则,求解即可;(3)设二项式绽开式第项的系数最大,求出的通项,则,解不等式即可得出答案.【解析】(1)因为,而,所以.所以令中,则全部项的系数之和为:.(2)若,则,,解得:.则的通项为:,其中,要使绽开式为有理项,则,则,故绽开式中的有理项的个数为.(3)若,则的通项为:,则设二项式绽开式第项的系数最大,则,得,化简得:,解得:.因为,则,所以系数最大的项为.26.若,其中.(1)求m的值;(2)求;(3)求.【答案】(1)(2)(3)0【分析】(1)由绽开式的通项求解即可;(2)令与即可求解;(3)令并结合(2)即可求解得【解析】(1)的绽开式的通项为,所以,所以,解得;(2)由(1)知,令,可得,令,可得,所以;(3)令,可得,由(2)知,所以27.将的二项绽开式中的二项式系数依次列为:.(1)依据二顶式定理,将绽开,并求证:;(2)探讨所列二项式系数的单调性,并求证:其最大值为.【答案】(1),证明见解析;(2)答案见解析.【分析】(1)由二项式定理得绽开式,在绽开式中令可证结论成立;(2)用作差法可得出二项式系数的单调性,从而得出最大值.【解析】(1)由已知,令得;(2),,当,,即时,,,当,即时,,,所以中,从到递增,从到递减,所以是最大值.28.已知.在以下A,B,C三问中任选两问作答,若三问都分别作答,则按前两问作答计分,作答时,请在答题卷上标明所选两问的题号.(A)求;(B)求;(C)设,证明:.【答案】答案不唯一,详细见解析【分析】选A利用二项式绽开写出全部含的项即可算出结果;选B,利用赋值法时,可得进而求得结果;选C,分别令,即可得出证明.【解析】选A
解:因为.选B
解:令,得,则.选C
证明:令,得;令,得.故.29.在中,把称为三项式的系数.(1)当时,写出三项式的系数的值;(2)类比的二项式绽开式(杨辉三角)的规律,当时,写出三项式的(杨辉三角)数字表,并求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届贵港市重点中学高三年级四月考数学试题
- 采购合同维保内容
- 编制合同心得体会
- 防汛应急演练
- 银行会计主管述职报告
- 辽宁省丹东市七校协作体2024-2025学年高一上学期11月期中地理试题
- 高考班考题昌黎文汇学校2024-2025学年第一学期期中考试高二化学试题
- 放射性示踪在医学影像中的作用
- 风电电缆相关行业投资规划报告范本
- 基础地质勘查服务相关项目投资计划书
- 自动化导论全套课件
- 国家开放大学机电控制工程基础形考二答案
- 危重病人紧急气道管理课件
- 境外就业劳务合同范本(2篇)
- 电缆敷设与绝缘检测记录
- 341农业知识综合三考研近年考试真题汇总(含答案)
- 国家开放大学一网一平台电大《可编程控制器应用实训》形考任务1-7终结性考试题库及答案
- 可摘局部义齿修复最全讲解学习课件
- 2022年标准员考试题库通关300题及答案解析(云南省专用)
- 职业生涯规划(建筑师)-高中生涯规划
- 幼儿园语言文字工作奖惩制度
评论
0/150
提交评论