版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省嵊州市蒋镇学校数学九上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知的半径为,点到圆心的距离为,则点和的位置关系是()A.点在圆内 B.点在圆上 C.点在圆外 D.不能确定2.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为(
)A. B. C. D.13.由的图像经过平移得到函数的图像说法正确的是()A.先向左平移6个单位长度,然后向上平移7个单位长度B.先向左平移6个单位长度,然后向下平移7个单位长度C.先向右平移6个单位长度,然后向上平移7个单位长度D.先向右平移6个单位长度,然后向下平移7个单位长度4.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.5.如图,在中,,,于点.则与的周长之比为()A.1:2 B.1:3 C.1:4 D.1:56.抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是().A.出现的点数是7 B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数7.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③8.下列说法正确的是()A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形9.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根10.用配方法解一元二次方程,变形正确的是()A. B. C. D.11.把二次函数化成的形式是下列中的()A. B.C. D.12.下列各点中,在函数y=-图象上的是()A.(﹣2,4) B.(2,4) C.(﹣2,﹣4) D.(8,1)二、填空题(每题4分,共24分)13.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.14.二次函数y=x2-2x+1的对称轴方程是x=_______.15.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.16.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.17.若、为关于x的方程(m≠0)的两个实数根,则的值为________.18.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为______.三、解答题(共78分)19.(8分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.20.(8分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C.(1)画出△ABC绕点B顺时针旋转90°后得到的△A1B1C1;(2)若点D,E也是网格中的格点,画出△BDE,使得△BDE与△ABC相似(不包括全等),并求相似比.21.(8分)如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,E是AC中点.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.22.(10分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.23.(10分)在中,AB=6,BC=4,B为锐角且cosB.(1)求∠B的度数.(2)求的面积.(3)求tanC.24.(10分)如图,反比例函数的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别为1和﹣2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,﹣1)时,求△ABC的面积.25.(12分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.
(1)求k的值;(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.26.在正方形中,点是边上一点,连接.图1图2(1)如图1,点为的中点,连接.已知,,求的长;(2)如图2,过点作的垂线交于点,交的延长线于点,点为对角线的中点,连接并延长交于点,求证:.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据点与圆的位置关系进行判断.【详解】∵⊙O的半径为6cm,P到圆心O的距离为6cm,
即OP=6,
∴点P在⊙O上.
故选:B.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2、A【解析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解.【详解】作AD⊥BC于点D,则AD=5,BD=5,∴AB===5,∴cos∠B===.故选A.【点睛】本题考查锐角三角函数的定义.3、C【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.【详解】解:抛物线y=2x2的顶点坐标为(0,0),
抛物线y=2(x-6)2+1的顶点坐标为(6,1),所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.
故选:C.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.4、A【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【详解】若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选A.【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.5、A【详解】∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故选A6、B【解析】分析:必然事件就是一定发生的事件,根据定义即可作出判断.解答:解:A、不可能发生,是不可能事件,故本选项错误,B、是必然事件,故正确,C、不一定发生,是随机事件,故本选项错误,D、不一定发生,是随机事件,故本选项错误.故选B.7、B【分析】根据二次函数的图象可逐项判断求解即可.【详解】解:抛物线与x轴有两个交点,
∴△>0,
∴b2−4ac>0,故①错误;
由于对称轴为x=−1,
∴x=−3与x=1关于x=−1对称,
∵x=−3,y<0,
∴x=1时,y=a+b+c<0,故②错误;
∵对称轴为x=−=−1,
∴2a−b=0,故③正确;
∵顶点为B(−1,3),
∴y=a−b+c=3,
∴y=a−2a+c=3,
即c−a=3,故④正确,
故选B.【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.8、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.9、A【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:,,,,,方程由两个不相等的实数根.故选A.【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.10、B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:故选:B.【点睛】本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.11、C【分析】先提取二次项系数,然后再进行配方即可.【详解】.故选:C.【点睛】考查了将一元二次函数化成y=a(x-h)2+k的形式,解题关键是正确配方.12、A【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.二、填空题(每题4分,共24分)13、6cm【分析】利用相似三角形的周长比等于相似比,根据它们的周长之和为15,即可得到结论.【详解】解:∵两个相似三角形的对应角平分线的比为2:3,∴它们的周长比为2:3,∵它们的周长之和为15cm,∴较小的三角形周长为15×=6(cm).故答案为:6cm.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.14、1【分析】利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【详解】∵-=-=1,∴x=1.故答案为1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.15、【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.16、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.17、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【详解】∵,,∴,故答案为:【点睛】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.18、1【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】解:连接,
由网格可得,,即,
∴为等腰直角三角形,
∴,
则,故答案为1.【点睛】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.三、解答题(共78分)19、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.【详解】解:(1)由正方形ABCD内或边上,已知点A(1,1),B(1,1),C(1,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为1,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为1,D点的坐标为(1,1);(1)把B(1,1)、C(1,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x1+3x﹣1;(3)由此时顶点E的坐标为(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=1﹣,x1=1+,即N(1+,0),M(1﹣,0),所以MN=1+﹣(1﹣)=1.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=0,x1=1,即N(1,0),M(0,0),所以MN=1﹣0=1.点E在线段AD上时,MN最大,点E在线段BC上时,MN最小;当顶点E在正方形ABCD内或边上时,1≤MN≤1;(4)当l经过点B,C时,二次函数的解析式为y=﹣x1+3x﹣1,c=﹣1;当l经过点A、D时,E点不在正方形ABCD内或边上,故排除;当l经过点B、D时,,解得:,即c=﹣1;当l经过点A、C时,,解得,即c=1;综上所述:l经过正方形ABCD的两个顶点,所有符合条件的c的值为﹣1,1,﹣1.【点睛】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正方形的性质求顶点坐标是解题的关键;利用顶点横坐标纵坐标越大,与x轴交点的线段越长得出顶点为D时MN最长,顶点为B时MN最短是解题的关键.20、(1)如图1所示:△A1B1C1,即为所求;见解析;(1)如图1所示:△BDE,即为所求,见解析;相似比为::1.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(1)直接利用相似图形的性质得出符合题意的答案.【详解】(1)如图1所示:△A1B1C1,即为所求;(1)如图1所示:△BDE,即为所求,相似比为::1.【点睛】本题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键.21、(1)见解析;(2)OF=1.1【分析】(1)由题意连接CD、OD,求得即可证明DE是⊙O的切线;(2)根据题意运用切线的性质、角平分线性质和勾股定理以及三角形的面积公式进行综合分析求解.【详解】解:(1)证明:连接CD,OD∵∠ACB=90°,BC为⊙O直径,∴∠BDC=∠ADC=90°,∵E为AC中点,∴EC=ED=AE,∴∠ECD=∠EDC;又∵∠OCD=∠CDO,∴∠EDC+∠CDO=∠ECD+∠OCD=∠ACB=90°,∴DE是⊙O的切线.(2)解:连接CD,OE,∵∠ACB=90°,∴AC为⊙O的切线,∵DE是⊙O的切线,∴EO平分∠CED,∴OE⊥CD,F为CD的中点,∵点E、O分别为AC、BC的中点,∴OE=AB==5,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=1,∵在Rt△ADC中,E为AC的中点,∴DE=AC==4,在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,由三角形的面积公式得:S△EDO=,即4×3=5×DF,解得:DF=2.4,在Rt△DFO中,由勾股定理得:OF===1.1.【点睛】本题考查圆的综合问题,熟练掌握并运用切线的性质和勾股定理以及角平分线性质等知识点进行推理和计算是解此题的关键.22、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.23、(1)60°;(2);(3)【解析】(1)直接利用三角函数值,即可求出∠B的度数;(2)过A作AD⊥BC于D,根据cosB,可求出BD的值,利用勾股定理可求出AD的值,即可求得的面积;(3)利用正切概念即可求得tanC的值;【详解】解:(1)∵B为锐角且cosB,∴∠B=60°;(2)如图,过A作AD⊥BC于D,在Rt中,cosB,∵AB=6,∴BD=3,∴,∴,(3)∵BD=3,BC=4,∴CD=1,∴在Rt中,tanC.【点睛】本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.24、(1),y=x+1;(2)2.【解析】试题分析:(1)根据两点纵坐标的和,可得b的值,根据自变量与函数的值得对关系,可得A点坐标,根据待定系数法,可得反比例函数的解析式;(2)根据自变量与函数值的对应关系,可得B点坐标,根据三角形的面积公式,可得答案.试题解析:解:(1)由题意,得:1+b+(﹣2)+b=1,解得b=1,一次函数的解析式为y=x+1,当x=1时,y=x+1=2,即A(1,2),将A点坐标代入,得=2,即k=2,反比例函数的解析式为;(2)当x=﹣2时,y=﹣1,即B(﹣2,﹣1).BC=2,S△ABC=BC•(yA﹣yC)=×2×[2﹣(﹣1)]=2.点睛:本题考查了反比例函数与一次函数的交点问题,利用纵坐标的和得出b的值是解(1)题关键;利用三角形的面积公式是解(2)的关键.25、(1);(2)(0,)【分析】(1)设B(a,b),由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,进而可得ab=6,再根据可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版自卸车租赁协议书
- Starter Unit 2 What is this in English 话题2 询问 询问录音稿和答案
- 2025年度医疗健康产业担保合同会计操作规范3篇
- 《禁毒防艾宣传》课件
- 2024版采矿合同协议书范本
- 2024某大型购物中心品牌商家入驻合同
- 2024版大型购物中心商铺租赁合同模板3篇
- 2024版小区场地租赁合同模板
- 2024版制作合同范本
- 2025年度二零二五年度艺人影视作品投资合作协议3篇
- 2022年四级反射疗法师考试题库(含答案)
- 新《安全生产法》培训测试题
- 政务礼仪-PPT课件
- 特种涂料类型——耐核辐射涂料的研究
- 化工装置常用英语词汇对照
- 隔膜压缩机(课堂PPT)
- 物资采购管理流程图
- 无牙颌解剖标志
- 标准《大跨径混凝土桥梁的试验方法》
- 格拉斯哥昏迷评分(GCS)--表格-改良自用
- ISO9001记录保存年限一览表
评论
0/150
提交评论