安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第1页
安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第2页
安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第3页
安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第4页
安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市埇桥区闵贤中学2025届九年级数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③2.如图,正方形的边长是4,是的中点,连接、相交于点,则的长是()A. B. C. D.53.下列事件是必然事件的是()A.地球绕着太阳转 B.抛一枚硬币,正面朝上C.明天会下雨 D.打开电视,正在播放新闻4.将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是()A.开口向下 B.经过点 C.与轴只有一个交点 D.对称轴是直线5.二次函数()的大致图象如图所示,顶点坐标为,点是该抛物线上一点,若点是抛物线上任意一点,有下列结论:①;②若,则;③若,则;④若方程有两个实数根和,且,则.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个6.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x27.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC8.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比()A. B. C. D.9.已知正六边形的边心距是,则正六边形的边长是()A. B. C. D.10.如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,过圆外一点作圆的一条割线交于点,若,,且,则_______.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.13.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.14.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.15.已知中,,,,则的长为__________.16.已知和时,多项式的值相等,则m的值等于______.17.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=______.18.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).三、解答题(共66分)19.(10分)如图,四边形ABCD中,对角线AC、BD相交于点O,且AD//BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F(1)求证:四边形ABCD为平行四边形;(2)求证:四边形BFDE为菱形.20.(6分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?21.(6分)解方程:4x2﹣8x+3=1.22.(8分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:(1)A、B两地之间的距离为千米,B、C两地之间的距离为千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;(3)请你直接写出点P的实际意义.23.(8分)已知关于x的方程x2﹣(m+2)x+2m=1.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.24.(8分)如图,点A的坐标为(0,﹣2),点B的坐标为(﹣3,2),点C的坐标为(﹣3,﹣1).(1)请在直角坐标系中画出△ABC绕着点A顺时针旋转90°后的图形△AB′C′;(2)直接写出:点B′的坐标,点C′的坐标.25.(10分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.26.(10分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.2、C【分析】先根据勾股定理解得BD的长,再由正方形性质得AD∥BC,所以△AOD∽△EOB,最后根据相似三角形性质即可解答,【详解】解:∵四边形ABCD是正方形,边长是4,∴BD=,,∵是的中点,AD∥BC,所以BC=AD=2BE,∴△AOD∽△EOB,∴,∴OD=BD=×4=.故选:C.【点睛】本题考查正方形性质、相似三角形的判定和性质,解题关键是熟练掌握相似三角形的判定和性质.3、A【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意;故选A.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据二次函数图象和性质以及二次函数的平移规律,逐一判断选项,即可得到答案.【详解】∵二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,∴平移后的二次函数解析式为:,∵2>0,∴抛物线开口向上,故A错误,∵,∴抛物线不经过点,故B错误,∵抛物线顶点坐标为:(2,0),且开口向上,∴抛物线与轴只有一个交点,故C正确,∵抛物线的对称轴为:直线x=2,∴D错误.故选C.【点睛】本题主要考查二次函数的图象和性质以及平移规律,掌握“左加右减,上加下减”是解题的关键.5、B【分析】由抛物线对称轴为:直线x=1,得x=-2与x=4所对应的函数值相等,即可判断①;由由抛物线的对称性即可判断②;由抛物线的顶点坐标为,结合函数的图象,直接可判断③;由方程有两个实数根和,且,得抛物线与直线的交点的横坐标为和,进而即可判断④.【详解】∵抛物线顶点坐标为,∴抛物线对称轴为:直线x=1,∴x=-2与x=4所对应的函数值相等,即:,∴①正确;由抛物线的对称性可知:若,则或,∴②错误;∵抛物线的顶点坐标为,∴时,,∴③错误;∵方程有两个实数根和,且,∴抛物线与直线的交点的横坐标为和,∵抛物线开口向上,与x轴的交点横坐标分别为:-1,3,∴,∴④正确.故选B.【点睛】本题主要考查二次函数图象与系数得的关系,掌握二次函数系数的几何意义,是解题的关键.6、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,

而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,

∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.7、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.8、D【分析】根据锐角三角函数可得:和,从而求出.【详解】解:在Rt△AOP中,,在Rt△BOP中,,∴故选D.【点睛】此题考查的是锐角三角函数,掌握锐角三角函数的定义是解决此题的关键.9、A【分析】如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB,然后求出正六边形的中心角,证出△OAB为等边三角形,然后利用等边三角形的性质和锐角三角函数即可求出结论.【详解】解:如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB正六边形的中心角∠AOB=360°÷6=60°∴△OAB为等边三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六边形的边长是.故选A.【点睛】此题考查的是根据正六边形的边心距求边长,掌握中心角的定义、等边三角形的判定及性质和锐角三角函数是解决此题的关键.10、A【分析】连接AC,如图,根据圆周角定理得到,,然后利用互余计算的度数.【详解】连接AC,如图,∵BC是的直径,∴,∵,∴.故答案为.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.二、填空题(每小题3分,共24分)11、1【分析】作OD⊥AB于D,由垂径定理得出AD=BD,由三角函数定义得出sin∠OAB=,设OD=4x,则OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性质得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【详解】作OD⊥AB于D,如图所示:则AD=BD,∵sin∠OAB=,∴设OD=4x,则OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案为:1.【点睛】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键.12、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【点睛】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.13、240m【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.14、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.15、5或1【分析】作交BC于D,分两种情况:①D在线段BC上;②D在线段BC的延长线上,根据锐角三角函数值和勾股定理求解即可.【详解】作交BC于D①D在线段BC上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴②D在线段BC的延长线上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴故答案为:5或1.【点睛】本题考查了解三角形的问题,掌握锐角的三角函数以及勾股定理是解题的关键.16、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.17、1﹣1【分析】连接OC,作EF⊥OC于F,根据圆心角、弧、弦的关系定理得到∠AOC=30°,根据等腰三角形的性质、三角形内角和定理得到∠ECF=15°,根据正切的定义列式计算,得到答案.【详解】连接OC,作EF⊥OC于F,∵点A关于直线CD的对称点为E,点E落在半径OA上,∴CE=CA,∵=,∴∠AOC=∠AOB=30°,∵OA=OC,∴∠OAC=∠OCA=75°,∵CE=CA,∴∠CAE=∠CEA=75°,∴∠ACE=30°,∴∠ECF=∠OCA-∠ACE=75°-30°=15°,设EF=x,则FC=x,在Rt△EOF中,tan∠EOF=,∴OF==,由题意得,OF+FC=OC,即x+x=1,解得,x=2﹣2,∵∠EOF=30°,∴OE=2EF=1﹣1,故答案为:1﹣1.【点睛】本题考查了圆心角、弧、弦的关系、解直角三角形的应用、三角形内角和定理,掌握锐角三角函数的定义是解题的关键.18、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】(1)由平行线的性质可得,根据EF经过点O且垂直平分BD可得,利用ASA可证明△DOA≌△BOC,可得OA=OC,即可证明四边形ABCD为平行四边形;(2)利用ASA可证明≌,可得OE=OF,根据对角线互相垂直且平分的四边形是菱形即可得结论.【详解】(1)∵AD//BC,经过点O,且垂直平分,∴,,在和中,∴≌,∴OA=OC,∴四边形为平行四边形.(2)由(1)知,,∴在和中,∴≌,∴,∵垂直平分,∴,,∴四边形为菱形.【点睛】本题考查平行四边形的判定及菱形的判定,有一组对边平行且相等的四边形是平行四边形;对角线互相垂直且平分的四边形是菱形;熟练掌握判定定理是解题关键.20、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是小军获胜的概率是,所以这个游戏不公平.【点睛】本题考查游戏公平性的判断,判断游戏的公平性要计算每个参与者获胜的概率,概率相等则游戏公平,否则游戏不公平,用到的知识点为:概率=所求情况数与总情况数之比.21、【解析】方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解.【详解】分解因式得:(2x-3)(2x-1)=1,可得2x-3=1或2x-1=1,解得:x1=,x2=.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.22、(1)2;1;(2)线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60);(3)点P的意义为:当x=分钟时,甲乙距B地都为千米.【分析】(1)当x=0时,y的值即为A、B两地间的距离,观察队伍乙的运动图象可知线段MN段为队伍乙从B地到C地段的函数图象,由此可得出B、C两地间的距离;(2)根据队伍乙的运动为匀速运动可根据路程比等于时间比来求出点M的坐标,设直线MN的解析式为y=kx+b(k≠0),再由M、N点的坐标利用待定系数法求出线段MN的解析式;(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),由点(0,2)、(60,0)利用待定系数法即可求出m、n的值,再令x﹣2=﹣x+2,求出交点P的坐标,结合坐标系中点的坐标意义即可解决问题.【详解】解:(1)当x=0时,y=2,∴A、B两地之间的距离为2千米;观察队伍乙的运动图象可知,B、C两地之间的距离为1千米.故答案为2;1.(2)乙队伍60分钟走6千米,走2千米用时60÷6×2=20分钟,∴M(20,0),N(60,1),设直线MN的解析式为y=kx+b(k≠0),则有,解得:.∴线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60).(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),则点(0,2)、(60,0)在该函数图象上,∴有,解得:.∴当0≤x≤60时,队伍甲的运动函数解析式为y=﹣x+2.令x﹣2=﹣x+2,解得:x=,将x=代入到y=﹣x+2中得:y=.∴点P的意义为:当x=分钟时,甲乙距B地都为千米.考点:一次函数的应用.23、(2)2;(2)见解析【分析】(2)将x=2代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【详解】(2)将x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由题意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不论m取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用根的判别式,本题属于基础题型.24、(1)见解析;(2)(4,1),(1,1).【分析】(1)利用网格特点和旋转的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论