枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第1页
枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第2页
枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第3页
枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第4页
枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

枣庄市第三十二中学2025届九年级数学第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.对于不为零的两个实数a,b,如果规定a★b,那么函数的图象大致是()A. B. C. D.2.在中,,,下列结论中,正确的是()A. B.C. D.3.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.4.将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣35.下列图案中,是中心对称图形的是()A. B.

C. D.6.一个几何体由若干个相同的正方体组成,其主视图和左视图如图所示,则组成这个几何体的正方体个数最小值为()A.5 B.6 C.7 D.87.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%8.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个9.下表是一组二次函数的自变量x与函数值y的对应值:

1

1.1

1.2

1.3

1.4

-1

-0.49

0.04

0.59

1.16

那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.310.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8 B.-6 C.-4 D.-211.下列事件中,必然事件是()A.抛掷个均匀的骰子,出现点向上 B.人中至少有人的生日相同C.两直线被第三条直线所截,同位角相等 D.实数的绝对值是非负数12.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°二、填空题(每题4分,共24分)13.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.14.若=,则的值为________.15.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.16.如图,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.17.如图,是的内接三角形,,的长是,则的半径是__________.18.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.三、解答题(共78分)19.(8分)如图,已知抛物线.(1)用配方法将化成的形式,并写出其顶点坐标;(2)直接写出该抛物线与轴的交点坐标.20.(8分)在平行四边形中,为对角线,,点分别为边上的点,连接平分.(1)如图,若且,求平行四边形的面积.(2)如图,若过作交于求证:21.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.22.(10分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.23.(10分)如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.24.(10分)如图,抛物线y=﹣x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=1.求抛物线的顶点坐标.25.(12分)解方程:(1)x2-8x+6=0(2)x123x1026.(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】先根据所给新定义运算求出分段函数解析式,再根据函数解析式来判断函数图象即可.【详解】解:∵a★b,∴∴当x>2时,函数图象在第一象限且自变量的值不等于2,当x≤2时,是反比例函数,函数图象在二、四象限.故应选C.【点睛】本题考查了分段函数及其图象,理解所给定义求出分段函数解析式是解题的关键.2、C【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.3、B【分析】根据正弦的定义列式计算即可.【详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【点睛】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.4、C【分析】根据平移原则:上→加,下→减,左→加,右→减写出解析式.【详解】解:将二次函数y=x2的图象向右平移一个单位长度,再向下平移1个单位长度所得的图象解析式为:y=(x﹣1)2﹣1.故选:C.【点睛】主要考查了函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.5、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.6、A【分析】根据题意分别找到2层组合几何体的最少个数,相加即可.【详解】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.【点睛】本题考查三视图相关,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数进行分析即可.7、A【分析】设平均每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设平均每次降价的百分率为x,依题意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.9、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.10、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可.【详解】解:连接OB,过点B作轴于点D,过点C作于点E,∵点P是BC的中点∴PC=PB∵∴∴∵∴∵点在双曲线上∴∴∴∴∵点在双曲线上∴∴.故选:C.【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键.11、D【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【详解】A.抛掷个均匀的骰子,出现点向上的概率为,错误.B.367人中至少有人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D.实数的绝对值是非负数,正确.故答案为:D.【点睛】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.12、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.二、填空题(每题4分,共24分)13、红【解析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.14、【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.15、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.16、1【分析】△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,即可求解.【详解】解:△ABC的面积S=AB×BC==12,延长BP交AC于点E,则E是AC的中点,且BP=BE,(证明见备注)△BEC的面积=S=6,BP=BE,则△BPC的面积=△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=CG证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.17、【分析】连接OB、OC,如图,由圆周角定理可得∠BOC的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB、OC,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:.故答案为:.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.18、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).

∴DC=-1-a,OC=1

又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.三、解答题(共78分)19、(1),顶点坐标为;(2),,【分析】(1)利用配方法将二次函数的一般式转化为顶点式,从而求出抛物线的顶点坐标;(2)将y=0代入解析式中即可求出结论.【详解】解:(1),顶点坐标为;(2)将y=0代入解析式中,得解得:∴抛物线与轴的交点坐标为,,【点睛】此题考查的是求抛物线的顶点坐标和求抛物线与x轴的交点坐标,掌握将二次函数的一般式转化为顶点式和一元二次方程的解法是解决此题的关键.20、(1)50;(2)详见解析【分析】(1)过点A作AH⊥BC,根据角平分线的性质可求出AH的长度,再根据平行四边形的性质与∠B的正弦值可求出AD,最后利用面积公式即可求解;(2)截取FM=FG,过F作FN⊥AF交AC延长线于点N,利用SAS证明≌,根据全等的性质、各角之间的关系及平行四边形的性质可证明,从而得到为等腰直角三角形,再利用ASA证明与全等,最后根据全等的性质即可证明结论.【详解】解:(1)过作,∵平分且,∴,∵四边形是平行四边形,∴∠B=∠D,∴sinB=sinD=,又∵,,∴,∴;(2)在上截取,过作交延长线于点,∵平分,∴,在和中,,∴≌(SAS),∴,,又∵,∴,∵,∴,∴,又∵平行四边形中:,且,∴,∴,又∵,∴,∴,即为等腰直角三角形,∵,,∴,又∵,∴,∴,在和中,,∴≌(ASA),∴,∵在中,,即,∴.【点睛】本题为平行四边形、全等三角形的判定与性质及锐角三角函数的综合应用,分析条件,作辅助线构造全等三角形是解题的关键,也是本题的难点.21、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.试题解析:()把代入反比例函数表达式,得,解得,∴反比例函数表达式为,把代入正比例函数,得,解得,∴正比例函数表达式为.()直线由直线向上平移个单位所得,∴直线的表达式为,由,解得或,∵在第四象限,∴,连接,∵,,,.22、.【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.23、(1)证明见解析;(2)4.【分析】(1)易证∠AGD=∠B,根据∠ADG=∠BEF=90°,即可证明△ADG∽△FEB;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,

∴∠A+∠B=90°,

∵四边形DEFG是矩形,

∴∠GDE=∠FED=90°,

∴∠GDA+∠FEB=90°,

∴∠A+∠AGD=90°,

∴∠B=∠AGD,

且∠GDA=∠FEB=90°,

∴△ADG∽△FEB.(2)解:∵△ADG∽△FEB,

∴,∵AD=2GD,∴,∴.【点睛】本题考查了相似三角形的判定与性质,求证△ADG∽△FEB是解题的关键.24、(﹣1,9)【分析】先写出A、B点的坐标,然后利用交点式写出抛物线解析式,再利用配方法得到抛物线的顶点坐标.【详解】解:∵OA=2OB=1,∴B(2,0),A(﹣1,0),∴抛物线解析式为y=﹣(x+1)(x﹣2),即y=﹣x2﹣2x+8,∵y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论