版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市新绛县2025届九年级数学第一学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是()A. B. C. D.2.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是等边三角形3.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.04.下列图形中的角是圆周角的是()A. B.C. D.5.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为A. B. C. D.06.下面的图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.7.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm8.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生9.如图,抛物线的图像交轴于点和点,交轴负半轴于点,且,下列结论错误的是()A. B. C. D.10.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40° B.60° C.80° D.100°11.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.12.若一个圆锥的底面积为,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值__________.14.如图,在边长为2的正方形中,动点,分别以相同的速度从,两点同时出发向和运动(任何一个点到达停止),在运动过程中,则线段的最小值为________.15.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;16.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.17.已知反比例函数,当_______时,其图象在每个象限内随的增大而增大.18.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.三、解答题(共78分)19.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.20.(8分)2019年11月26日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,,∠ABD=105°,求AD的长.21.(8分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.22.(10分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,交y轴于点C,已知A(﹣1,0)对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若AOC与BMN相似,请求出t的值;②BOQ能否为等腰三角形?若能,求出t的值.23.(10分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.24.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.25.(12分)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点P从点A出发,沿AB边以2cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1cm/s的速度向点C匀速移动,当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)当PQ∥AC时,求t的值;(2)当t为何值时,△PBQ的面积等于cm2.26.如图,在平面直角坐标系中,的三个顶点坐标分别为.(1)画出,使与关于点成中心对称,并写出点的对应点的坐标_____________;(2)以原点为位似中心,位似比为1:2,在轴的左侧,画出将放大后的,并写出点的对应点的坐标___________________;(3)___________________.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据图形证明△AOE≌△COG,作KM⊥AD,证明四边形DKMN为正方形,再证明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,设正方形边长为a,CG=MN=x,根据正方形的性质列出平行四边形的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形是平行四边形,四边形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四边形AEND为矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四边形DKMN为正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,设CG=MN=x,设正方形边长为a则S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四边形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四边形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面积BE=a-x,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.2、B【分析】先根据特殊角的三角函数值求出∠A,∠B的值,再根据三角形内角和定理求出∠C即可判断三角形的形状。【详解】∵tanA=1,sinB=,∴∠A=45°,∠B=45°.∴AC=BC又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选:B.【点睛】本题考查了特殊角的三角函数值,解答此题的关键是熟记特殊角的三角函数值.需要注意等角对等边判定等腰三角形。3、B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.4、C【解析】根据圆周角的定义来判断即可.圆周角必须符合两个条件:顶点在圆上,两边与圆相交,二者缺一都不是.【详解】解:圆周角的定义是:顶点在圆上,并且角的两边和圆相交的角叫圆周角.A、图中的角的顶点不在圆上,不是圆周角;B、图中的角的顶点也不在圆上,不是圆周角;C、图中的角的顶点在圆上,两边与圆相交,是圆周角;D.图中的角的顶点在圆上,而两边与圆不相交,不是圆周角;故选:【点睛】本题考查了圆周角的定义.圆周角必须符合两个条件.5、A【解析】∵一元二次方程ax2+bx+k=0有实数解,∴可以理解为y=ax2+bx和y=−k有交点,由图可得,−k≤4,∴k≥−4,∴k的最小值为−4.故选A.6、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.不是轴对称图形,是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.7、D【解析】∴选D8、D【分析】利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.9、B【分析】A根据对称轴的位置即可判断A正确;图象开口方向,与y轴的交点位置及对称轴位置可得,,即可判断B错误;把点坐标代入抛物线的解析式即可判断C;把B点坐标代入抛物线的解析式即可判断D;【详解】解:观察图象可知对称性,故结论A正确,由图象可知,,,,故结论B错误;抛物线经过,,故结论C正确,,,点坐标为,,,,故结论D正确;故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右.(简称:左同右异);常数项决定抛物线与轴交点:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.10、C【分析】利用圆周角与圆心角的关系得出∠COB=40°,再根据垂径定理进一步可得出∠DOB=∠COB,最后即可得出答案.【详解】∵∠A=20°,∴∠COB=2∠A=40°,∵CD⊥AB,OC=OD,∴∠DOB=∠COB=40°,∴∠COD=∠DOB+∠COB=80°.故选:C.【点睛】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.11、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】解:∵圆锥的底面积为4πcm2,
∴圆锥的底面半径为2cm,
∴底面周长为4π,
圆锥的高为4cm,
∴由勾股定理得圆锥的母线长为6cm,
设侧面展开图的圆心角是n°,
根据题意得:=4π,
解得:n=1.
故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.二、填空题(每题4分,共24分)13、1(满足条件的k值的范围是0<k≤4)【分析】反比例函数上一点向x、y轴分别作垂线,分别交于y轴和x轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】∵反比例函数图像与正方形有交点,∴当交于B点时,此时围成的矩形面积最大且为4,∴|k|最大为4,∵在第一象限,∴k为正数,即0<k≤4,∴k的取值可以为:1.故答案为:1(满足条件的k值的范围是0<k≤4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.14、【解析】如图(见解析),先根据正方形的性质、三角形的判定定理与性质得出,再根据正方形的性质、角的和差得出,从而得出点P的运动轨迹,然后根据圆的性质确认CP取最小值时点P的位置,最后利用勾股定理、线段的和差求解即可.【详解】由题意得:由正方形的性质得:,即在和中,,即点P的运动轨迹在以AB为直径的圆弧上如图,设AB的中点为点O,则点P在以点O为圆心,OA为半径的圆上连接OC,交弧AB于点Q由圆的性质可知,当点P与点Q重合时,CP取得最小值,最小值为CQ,即CP的最小值为故答案为:.【点睛】本题是一道较难的综合题,考查了三角形全等的判定定理与性质、圆的性质(圆周角定理)、勾股定理等知识点,利用圆的性质正确判断出点P的运动轨迹以及CP最小时点P的位置是解题关键.15、6【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.16、【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.17、【分析】根据反比例函数的性质求出m的取值范围即可.【详解】∵反比例函数在每个象限内随的增大而增大∴解得故答案为:.【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.18、15【分析】根据比例线段的定义即可求解.【详解】由题意得:将a,b,c的值代入得:解得:(cm)故答案为:15.【点睛】本题考查了比例线段的定义,掌握比例线段的定义及其基本性质是解题关键.三、解答题(共78分)19、(1)袋子中白球有4个;(2)【分析】(1)设白球有
x
个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20、2()km【分析】作BE⊥AD于点E,根据∠CAB=30°,∠ABD=105°,可以求得∠ABE和∠DBE的度数以及BE、DE的长,进而求得AE的长,然后可求得AD的长.【详解】作BE⊥AD于点E,∵∠CAB=30°,∴∠ABE=60°,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∵,∴BE=DE=2km,∴AE=,∴AD=AE+DE=+2=2()km【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.21、详见解析.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【详解】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.22、(1);;(2)①t=1;②当秒或秒时,△BOQ为等腰三角形.【分析】(1)将A、B点的坐标代入y=﹣x2+bx+c中,即可求解;(2)①△AOC与△BMN相似,则或,即可求解;②分OQ=BQ,BO=BQ,OQ=OB三种情况,分别求解即可;【详解】(1)∵A(﹣1,0),函数对称轴是直线x=1,∴,把A、B两点代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为,∴C点的坐标为.(3)①如下图,,△AOC与△BMN相似,则或,即或,解得或或3或1(舍去,,3),故t=1.②∵,轴,∴,∵△BOQ为等腰三角形,∴分三种情况讨论:第一种:当OQ=BQ时,∵,∴OM=MB,∴,∴;第二种:当BO=BQ时,在Rt△BMQ中,∵,∴,即,∴;第三种:当OQ=OB时,则点Q、C重合,此时t=0,而,故不符合题意;综上所述,当秒或秒时,△BOQ为等腰三角形.【点睛】本题主要考查了二次函数的综合,准确分析求解是做题的关键.23、(1)8;(1)-1【解析】分析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(1)根据分式的加减法和除法可以化简题目中的式子,然后解方程,在其解中选一个使得原分式有意义的值代入即可解答本题.详解:(1)6cos45°+()-1+(-1.73)0+|5-3|+41017×(-0.15)1017=6×+3+1+5-3+41017×(-)1017=3+3+1+5−3−1=8;(1)÷==∵∴a=0或a=1(舍去)当a=0时,原式=-1.点睛:本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.24、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC两种情况;(3)过点Q作QN∥OB交x轴于点N,得出△AQN为等边三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的长,利用m=BE=OB﹣OE求出即可.【详解】(2)如图l,∵△AOB为等边三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin62°=.需要分类讨论:当△PHQ∽△ABC时,,即:,解得,t=2.同理,当△QHP∽△ABC时,t=2.综上所述,t=2或t=2;(3)如图2,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=62°=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN,∴△POE∽△PNQ,∴,∴,∴,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE,∴m=BE=OB﹣OE=(2<t<3).考点:相似形综合题.25、(1)t=;(2)当t为2s或3s时,△PBQ的面积等于cm2.【分析】(1)根据PQ∥AC得到△PBQ∽△ABC,列出比例式即可求解;(2)解法一:过点Q作QE⊥AB于E,利用△BQE∽△BCA,得到,得到QE=t,根据S△PBQ=BP·QE=列出方程即可求解;解法二:过点P作PE⊥BC于E,则PE∥AC,得到△B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代文学开题报告模板
- 2024年重有色金属矿产:锌矿项目合作计划书
- 山西传媒学院《机械设计基础III》2023-2024学年第一学期期末试卷
- 山东中医药大学《信息技术学科教学论》2023-2024学年第一学期期末试卷
- 劳务合同范例地址
- 护士评职称个人述职报告
- 工程设计合同范例文号
- 化学物品运输合同范例
- 食物供应合同范例
- 代买车辆合同范例
- 肾积水教学演示课件
- 《我认识的交通标志》课件
- 煤焦酚-安全技术说明书MSDS
- 平安建设 培训 课件
- 森林火灾的风险评估与分级管理课件
- 2024年湖北省初中学业水平考试物理•化学试题
- 跨文化交流与国际视野培养
- 医院检验科院感知识
- 小学语文部编版六年级上册词语表《看拼音写词语》专项练习(附参考答案)
- 2024高血压健康知识讲座
- 保密与项目管理
评论
0/150
提交评论