2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题含解析_第1页
2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题含解析_第2页
2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题含解析_第3页
2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题含解析_第4页
2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省连云港市灌南县二中高一下数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则值为A. B. C. D.2.数列{an}中a1=﹣2,an+1=1,则a2019的值为()A.﹣2 B. C. D.3.在等差数列中,若,则的值为()A.15 B.21 C.24 D.184.已知是单位向量,.若向量满足()A. B.C. D.5.若向量,,且,则=()A. B.- C. D.-6.若角α的终边经过点P(-1,1A.sinα=1C.cosα=27.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.8.在等差数列中,若,则()A.10 B.15 C.20 D.259.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°10.数列是各项均为正数的等比数列,数列是等差数列,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,数列的通项公式是,当取得最小值时,_______________.12.设公差不为零的等差数列的前项和为,若,则__________.13.已知正实数a,b满足2a+b=1,则1a14.一组样本数据8,10,18,12的方差为___________.15.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.16.圆上的点到直线4x+3y-12=0的距离的最小值是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:,.18.某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.已知,,.(1)求关于的表达式,并求的最小正周期;(2)若当时,的最小值为,求的值.20.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.21.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用三角函数的诱导公式,得到,即可求解.【详解】由题意,可得,故选B.【点睛】本题主要考查了三角函数的诱导公式的化简、求值,其中解答中熟练应用三角函数的诱导公式是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

根据递推公式,算出即可观察出数列的周期为3,根据周期即可得结果.【详解】解:由已知得,,,

,…,,

所以数列是以3为周期的周期数列,故,

故选:B.【点睛】本题考查递推数列的直接应用,难度较易.3、D【解析】

利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。4、A【解析】

因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.5、B【解析】

根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.6、B【解析】

利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.7、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.8、C【解析】

设等差数列的公差为,得到,又由,代入即可求解,得到答案.【详解】由题意,设等差数列的公差为,则,又由,故选C.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.9、C【解析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.10、B【解析】分析:先根据等比数列、等差数列的通项公式表示出、,然后表示出和,然后二者作差比较即可.详解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故选B.点睛:本题主要考查了等比数列的性质.比较两数大小一般采取做差的方法.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、110【解析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.12、【解析】

设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【点睛】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.13、9【解析】

利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.14、14【解析】

直接利用平均数和方差的公式,即可得到本题答案.【详解】平均数,方差.故答案为:14【点睛】本题主要考查平均数公式与方差公式的应用.15、;【解析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.16、【解析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)可以预测产量为(吨)的生产能耗为(吨)【解析】

(1)根据表格中的数据,求出,,,代入回归系数的公式可求得,再根据回归直线过样本中心点即可求解.由(1)将代入即可求解.【详解】(1)由题意,根据表格中的数据,求得,,,,代入回归系数的公式,求得,则,故线性回归方程为.(2)由(1)可知,当时,,则可以预测产量为(吨)的生产能耗为(吨).【点睛】本题考查了线性回归方程,需掌握回归直线过样本中心点这一特征,考查了学生的计算能力,属于基础题.18、(1)0.48(2)()【解析】

(1)计算日用水量小于0.35时,频率分布直方图中长方形面积之和即可;(2)根据频率分布直方图计算出使用电子节水阀后日均节水量的平均值,再求出年节水量即可.【详解】(1)根据直方图,该家庭使用电子节水阀后20天日用水量小于0.35的频率为,因此该家庭使用电子节水阀后日用水量小于0.35的概率的估计值为0.48.(2)该家庭使用了电子节水阀后20天日用水量的平均数为.估计使用电子节水阀后,一年可节省水().【点睛】本题考查对频率分布直方图的理解,以及由频率分布直方图计算平均数,属基础题.19、(1),;(2).【解析】

(1)根据向量数量积的坐标运算及辅助角公式得:,并求出最小正周期为;(2)由,得到,从而,再根据的最小值为,求得.【详解】(1),所以.(2)当时,则,所以,所以,解得:.【点睛】本题考查向量与三角函数的交会,求函数的最值时,要注意整体思想的运用,即先求出,再得到.20、(I);(II),或【解析】

(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论