版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州寻乌县二中2025届数学高一下期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,,且,则的值为()A. B. C. D.2.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是()A. B. C. D.3.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A., B.,C., D.,4.已知偶函数在区间上单调递增,且图象经过点和,则当时,函数的值域是()A. B. C. D.5.已知中,,,,则B等于()A. B.或 C. D.或6.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.7.已知向量,,若,,则的最大值为()A. B. C.4 D.58.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=09.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.2510.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.七位评委为某跳水运动员打出的分数的茎叶图如图,其中位数为_______.12.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.13.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557514.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.15.若方程表示圆,则实数的取值范围是______.16.若为幂函数,则满足的的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.18.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.19.已知等差数列的前n项和为,关于x的不等式的解集为.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.20.如图,在直三棱柱中,,,,点N为AB中点,点M在边AB上.(1)当点M为AB中点时,求证:平面;(2)试确定点M的位置,使得平面.21.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.2、C【解析】
本题首先可确定四个选项中的函数的周期性以及在区间上的单调性、奇偶性,然后根据题意即可得出结果.【详解】A项:函数周期为,在上是增函数,奇函数;B项:函数周期为,在上是减函数,偶函数;C项:函数周期为,在上是增函数,偶函数;D项:函数周期为,在上是减函数,偶函数;综上所述,故选C.【点睛】本题考查三角函数的周期性以及单调性,能否熟练的掌握正弦函数以及余弦函数的图像性质是解决本题的关键,考查推理能力,是简单题.3、B【解析】
以作为基底的向量需要是不共线的向量,可以从向量的坐标发现,,选项中的两个向量均共线,得到正确结果是.【详解】解:可以作为基底的向量需要是不共线的向量,中一个向量是零向量,两个向量共线,不合要求中两个向量是,,则故与不共线,故正确;中两个向量是,两个向量共线,项中的两个向量是,两个向量共线,故选:.【点睛】本题考查平面中两向量的关系,属于基础题.4、A【解析】
由题意结合函数的单调性和函数的奇偶性确定函数的值域即可.【详解】偶函数在区间上单调递增,则函数在上单调递减,且,故函数的值域为.本题选择A选项.【点睛】本题主要考查函数的单调性,函数的奇偶性,函数值域的求解等知识,意在考查学生的转化能力和计算求解能力.5、D【解析】
根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点睛】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.6、B【解析】
△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.7、A【解析】
设,由可得点的轨迹方程,再对两边平方,利用一元二次函数的性质求出最大值,即可得答案.【详解】设,,∵,∴,整理得:.∵,∴,当时,的最大值为,∴的最大值为.故选:A.【点睛】本题考查向量模的最值、模的坐标运算、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.8、A【解析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.9、C【解析】
将|a+b10、D【解析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、85【解析】
按照茎叶图,将这组数据按照从小到大的顺序排列,找出中间的一个数即可.【详解】按照茎叶图,这组数据是79,83,84,85,87,92,93.把这组数据按照从小到大的顺序排列,最中间一个是85.所以中位数为85.故答案为:85【点睛】本题考查对茎叶图的认识.考查中位数,属于基础题.12、【解析】
取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.13、60【解析】
由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题14、1【解析】
根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题15、.【解析】
把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.16、【解析】
根据幂函数定义知,又,由二倍角公式即可求解.【详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【点睛】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.18、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、(1);(2).【解析】
(1)根据不等式的解集,得到和,从而得到等差数列的公差,得到的通项公式;(2)由(1)得到的的通项,得到的通项,利用等比数列的求和公式,得到答案.【详解】(1)因为关于x的不等式的解集为,所以得到,,所以,,为等差数列,设其公差为,所以,所以,所以(2)因为,所以所以是以为首项,为公比的等比数列,所以.【点睛】本题考查一元二次不等式解集与系数的关系,求等差数列的通项,等比数列求和,属于简单题.20、(1)见解析;(2)见解析【解析】
(1)推导出,由此能证明平面.(2)当点是中点时,推导出,,从而平面,进而,推导出△,从而,由此能证明平面.【详解】(1)在直三棱柱中,点为中点,为中点,,平面,平面,平面.(2)当点是中点时,使得平面.证明如下:在直三棱柱中,,,,点为中点,点是中点,,,,平面,平面,,,,,△,,,,,平面.【点睛】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21、(1),;(2).【解析】
(1)先求出周期得,由最高点坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人员密集场所安全培训
- ChatGPT行业报告:算力
- 《班组安全培训》课件
- 《组织结构图例》课件
- 适老智能家居系统定义
- 卫生标准培训
- 二年级数学100以内三数加减法混合运算题过关作业练习题
- 现代办公事务处理值班的类型和编排方法
- 《逆转录病毒科》课件
- 项目管理工具之韦恩图社会工作专业教学案例宝典
- 小学主题班会 四年级英语家长会 全国通用(共15张PPT)
- 住房公积金贷款申请表
- 煤的工业分类
- DB32∕T 2860-2015 散装液体化学品槽车装卸安全作业规范
- 针灸疗法ppt课件(1)
- 呼吸衰竭课件
- 药学专业高水平专业群建设项目建设方案
- 透水性材料施工技术方案
- 马铃薯栽培技术课件
- 砌体结构承载力计算
- 北京大学数字图像处理(冈萨雷斯)(课堂PPT)
评论
0/150
提交评论