湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题含解析_第1页
湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题含解析_第2页
湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题含解析_第3页
湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题含解析_第4页
湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省鄂州市鄂州高中2025届高一数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,若的面积为,则()A. B. C. D.2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.14.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.5005.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.在中,,,则的最大值为A. B. C. D.7.已知数列中,,则()A. B. C. D.8.若,则下列不等式中不正确的是()A. B. C. D.9.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(

)A. B. C. D.10.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列二、填空题:本大题共6小题,每小题5分,共30分。11.已知锐角、满足,,则________.12.在正项等比数列中,,,则公比________.13.若一组样本数据,,,,的平均数为,则该组样本数据的方差为14.等差数列中,公差.则与的等差中项是_____(用数字作答)15.102,238的最大公约数是________.16.若,其中是第二象限角,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知等差数列满足,的前项和为.(1)求及;(2)记,求19.某企业生产的某种产品,生产总成本(元)与产量(吨)()函数关系为,且函数是上的连续函数(1)求的值;(2)当产量为多少吨时,平均生产成本最低?20.已知函数,.(1)求解不等式;(2)若,求的最小值.21.记为数列的前项和,且满足.(1)求数列的通项公式;(2)记,求满足等式的正整数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意可得,化简后利用正弦定理将“边化为角“即可.【详解】解:的面积为,,,故选:C.【点睛】本题主要考查正弦定理的应用和三角形的面积公式,属于基础题.2、D【解析】

根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【点睛】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.3、B【解析】

通过等差中项的性质即可得到答案.【详解】由于,故,故选B.【点睛】本题主要考查等差数列的性质,难度较小.4、C【解析】

根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.5、A【解析】

根据,因此只需把函数的图象向左平移个单位长度.【详解】因为,所以只需把函数的图象向左平移个单位长度即可得,选A.【点睛】本题主要考查就三角函数的变换,左加右减只针对,属于基础题.6、A【解析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.7、B【解析】

由数列的递推关系,可得数列的周期性,再求解即可.【详解】解:因为,①则,②①+②有:,即,则,即数列的周期为6,又,得,,则,故选:D.【点睛】本题考查了数列的递推关系,重点考查了数列周期性的应用,属基础题.8、C【解析】

,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.9、A【解析】

画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.10、B【解析】

根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:由题意,所以.考点:三角函数运算.12、【解析】

利用等比中项可求出,再由可求出公比.【详解】因为,,所以,,解得.【点睛】本题考查了等比数列的性质,考查了计算能力,属于基础题.13、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.14、5【解析】

根据等差中项的性质,以及的值,求出的值即是所求.【详解】根据等差中项的性质可知,的等差中项是,故.【点睛】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.15、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.16、【解析】

首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用条件求数列的首项与公比,确定所求.(2)将分组,,再利用等比数列前n项和公式求和【详解】解:(1)设等比数列的公比为,所以,由,所以,则;(2),所以数列的前项和,则数列的前项和.【点睛】本题考查等比数列的通项,分组求和法,考查计算能力,属于中档题.18、(1),(2)【解析】

(1)利用等差数列的通项公式,结合,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式和前项和公式求出及;(2)利用裂项相消法可以求出.【详解】解:(1)设等差数列的公差为d,(2)由(1)知:【点睛】本题考查了等差数列的通项公式和前项和公式,考查了裂项相消法求数列前项和,考查了数学运算能力.19、(1);(2)当产量吨,平均生产成本最低.【解析】

(1)根据函数连续性的定义,可得在分段处两边的函数值相等,可得a的值;(2)求出平均成本的表达式,结合二次函数和基本不等式,可得平均生产成本的最小值点.【详解】(1)设,由函数是上的连续函数.即,代入得(2)设平均生产成本为,则当中,,函数连续且在单调递减,单调递增即当,元当,,由,当且仅当取等号,即当,元综上所述,当产量吨,平均生产成本最低.【点睛】本题考查的知识点是分段函数的应用,二次函数的图象和性质,基本不等式求最值,属于中档题.20、(1)或(2)【解析】

(1)对x分类讨论解不等式得解;(2)由题得,再利用基本不等式求函数的最小值.【详解】解:(1)当时,,解得.当时,,解得.所以不等式解集为或.(2),当且仅当,即时取等号.【点睛】本题主要考查分式不等式的解法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论