版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西南宁市高一数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别是.已知,,,则A. B. C. D.2.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.3.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.4.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x
1
2
3
4
所减分数y
4.5
4
3
2.5
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.255.若直线的倾斜角为,则的值为()A. B. C. D.6.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.7.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.108.若向量,,则在方向上的投影为()A.-2 B.2 C. D.9.已知,则().A. B. C. D.10.函数的图象的一条对称轴方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,为其前项和,若,则,则______.12.若是等比数列,,,则________13.若a、b、c正数依次成等差数列,则的最小值为_______.14.已知函数是定义域为的偶函数,当时,,若关于的方程有且仅有6个不同实数根,则实数的取值范围为______.15.已知,则______.16.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)19.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.20.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.21.已知向量,不是共线向量,,,(1)判断,是否共线;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.2、B【解析】
如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【点睛】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.3、A【解析】
画出三点的图像,根据的斜率,求得直线斜率的取值范围.【详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【点睛】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.4、D【解析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.5、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.6、C【解析】
得到圆心距与半径和差关系得到答案.【详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.7、B【解析】
点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.8、A【解析】向量,,所以,||=5,所以在方向上的投影为=-2故选A9、C【解析】
分子分母同时除以,利用同角三角函数的商关系化简求值即可.【详解】因为,所以,于是有,故本题选C.【点睛】本题考查了同角三角函数的商关系,考查了数学运算能力.10、A【解析】
由,得,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.12、【解析】
根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.13、1【解析】
由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.14、0<a≤或a.【解析】
运用偶函数的性质,作出函数f(x)的图象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),结合图象,分析有且仅有6个不同实数根的a的情况,即可得到a的范围.【详解】函数是定义域为的偶函数,作出函数f(x)的图象如图:关于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),当0≤x≤2时,f(x)∈[0,],x>2时,f(x)∈(,).由,则f(x)有4个实根,由题意,只要f(x)=a有2个实根,则由图象可得当0<a≤时,f(x)=a有2个实根,当a时,f(x)=a有2个实根.综上可得:0<a≤或a.故答案为0<a≤或a..【点睛】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.15、【解析】
利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.16、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【点睛】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.18、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解析】
(1)根据所给数据和公式计算回归方程的系数,注意回归直线过中心点,得回归方程;(2)根据回归系数的正负可得正相关还是负相关,令代入可得估计值.【详解】(1),,,,,,故线性回归方程为.(2)因为,故可以判断,该高三学生的记忆力x和判断力是正相关;由回归直线方程预测,判断力为4的同学的记忆力约为9.【点睛】本题考查求线性回归直线方程,考查变量的相关性及回归方程的应用.回归方程中的系数的正负说明两数据的正负相关,系数为正,则为正相关,系数为负,则为负相关.19、(1),;(2),.【解析】
(1)由可得,,∴.由,且,解得,∴函数的定义域为.(2)令,则,,当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平方米.考点:1.分式不等式;2.均值不等式.20、(1)(2)【解析】
(1)求得,在中运用余弦定理可得所求值;(2)在中,求得,,,再由三角形的面积公式,可得所求值.【详解】(1)由题意可得,在中,由余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肠梗阻导管治疗
- 第二单元《声》2.声的特性及利用(双基过关)(解析版)
- 3.1 科学探究:声音的产生与传播 (解析版)
- 痛风护理问题与护理措施
- 手术病人安全查对
- 航空礼仪培训
- 心内科如何分清病种
- 2022-2023学年山东省德州市高二(下)期中地理试卷
- 2024年江西省重点中学盟校高考地理一模试卷
- 湖北汽车工业学院科技学院《英语语法》2021-2022学年第一学期期末试卷
- 2024年黑龙江检察机关法院书记员招聘笔试参考题库附带答案详解
- 中考命题作文预测及导写:“一步一步往前走”
- 口腔消毒灭菌知识培训课件
- 针刺治疗颈椎病
- 室内设计大学生职业生涯规划模板
- 工程人员服务意识培训课件
- 儿童视力保护培训课件
- 玻璃制品行业员工转正汇报
- 科学人教鄂教版六年级上册全册分层练习含答案
- 新时代十年生态文明建设成就
- 末梢采血护理课件
评论
0/150
提交评论