版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省嘉积中学高一下数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角满足,则()A. B. C. D.2.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位3.把函数的图象经过变化而得到的图象,这个变化是()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.已知,所在平面内一点P满足,则()A. B. C. D.5.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数6.已知圆柱的侧面展开图是一个边长为的正方形,则这个圆柱的体积是()A. B. C. D.7.已知在中,为线段上一点,且,若,则()A. B. C. D.8.将一边长为2的正方形沿对角线折起,若顶点落在同一个球面上,则该球的表面积为()A. B. C. D.9.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.10.椭圆中以点M(1,2)为中点的弦所在直线斜率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则=_________12.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.13.直线与间的距离为________.14..已知,若是以点O为直角顶点的等腰直角三角形,则的面积为.15.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.16.若则的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:;(2)化简:.18.已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求数列{an}的通项公式:(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.19.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?20.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.21.在等差数列中,已知,.(I)求数列的通项公式;(II)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.2、D【解析】
根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题3、B【解析】
试题分析:,与比较可知:只需将向右平移个单位即可考点:三角函数化简与平移4、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.5、C【解析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.6、A【解析】
由已知易得圆柱的高为,底面圆周长为,求出半径进而求得底面圆半径即可求出圆柱体积。【详解】底面圆周长,,所以故选:A【点睛】此题考查圆柱的侧面展开为长方形,长为底面圆周长,宽为圆柱高,属于简单题目。7、C【解析】
首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.8、D【解析】
令正方形对角线与的交点为,如图所示:由正方形中,,则,那么,将正方形沿对角线折起,如图所示:则点为三棱锥的外接球的球心,且半径为,故外接球的表面积为.故选:D【点睛】本题考查了多面体的外接球问题以及球的表面积公式,属于基础题.9、C【解析】
直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.10、A【解析】
先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【详解】设弦的两端点为,,代入椭圆得,两式相减得,即,即,即,即,∴弦所在的直线的斜率为,故选A.【点睛】本题主要考查了椭圆的性质以及直线与椭圆的关系.在解决弦长的中点问题,涉及到“中点与斜率”时常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,达到解决问题的目的,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵,∴∴=1×[+]=1.故答案为:1.12、【解析】
由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.13、【解析】
根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.14、4【解析】由得;由是以为直角顶点的等腰直角三角形,则,.由得.又,则,所以又,则,则,所以所以;则则的面积为15、6【解析】
设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.16、【解析】
根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-2(2)【解析】
(1)利用特殊角的三角函数值求得表达式的值.(2)利用诱导公式化简所求表达式.【详解】(1).(2).【点睛】本小题主要考查特殊角的三角函数值,考查诱导公式,属于基础题.18、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根据递推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基础之上解不等式可得实数的取值范围.【详解】(1)由已知,根据递推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,当n≥2时,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2时,an=11+2×(1﹣()n﹣1),又a1=1也满足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因为3﹣2()n﹣1>0,所以,当n为奇数时,3﹣2()n﹣1∈[1,3);当n为偶数时,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值为4,最小值为1.对于任意的正整数n都有成立,所以1≤m.即所求实数m的取值范围是{m|1≤m}.【点睛】本题主要考查数列的递推公式知识和不等式的相关知识,式子繁琐,易错,属于中档题.19、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【点睛】本题主要考查阅读能力及建模能力、等比数列的求和公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.20、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中政治课听评课记录
- 班队听评课记录
- 《瘫痪的类型及病因》课件
- 《语文总复习》课件
- 《消法质量法》课件
- 《病例讨论示例》课件
- 《储量计算》课件
- 【大学课件】劳动关系管理
- 初二物理上学期教学计划方案
- 五月班主任工作计划
- 2024年建设工程质量检测人员-建设工程质量检测人员(门窗检测)考试近5年真题集锦(频考类试题)带答案
- 人教版(2024新版)七年级上册英语Unit 7单元测试卷(含答案)
- 2024年新人教版三年级数学上册《第6单元第11课时 数字编码》教学课件
- (北师大版)五年级数学上册期末复习计划
- 西藏林芝地区一中2025届高二数学第一学期期末联考试题含解析
- 2024标准版劳务合同范本下载
- 《昼夜交替》(教学设计)-2023-2024学年五年级下册科学苏教版
- DBJ04∕T 325-2024 城市电力电缆隧道工程技术标准
- 2024届九省联考高三新高考适应性测试英语试题及答案
- 2024年冰淇淋品类线上消费与行业洞察分析报告
- 生产部门年度培训计划表
评论
0/150
提交评论