2025届河南省郑州市八校数学高一下期末统考模拟试题含解析_第1页
2025届河南省郑州市八校数学高一下期末统考模拟试题含解析_第2页
2025届河南省郑州市八校数学高一下期末统考模拟试题含解析_第3页
2025届河南省郑州市八校数学高一下期末统考模拟试题含解析_第4页
2025届河南省郑州市八校数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省郑州市八校数学高一下期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.482.已知集合,则().A. B. C. D.3.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.4.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.65.已知角的终边经过点(3,-4),则的值为()A. B. C. D.6.已知向量,,若,共线,则实数()A. B. C. D.67.棱长都是1的三棱锥的表面积为()A. B. C. D.8.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.19.函数的部分图像如图所示,则A.B.C.D.10.圆心为且过原点的圆的一般方程是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角是第四象限角,则角的终边在_____________12.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.13.关于的方程()的两虚根为、,且,则实数的值是________.14.在等差数列中,若,则__________.15.已知,,则当最大时,________.16.方程的解集是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1km内不能收到手机信号,检查员抽查某市一考点,在考点正西约km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?18.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.19.已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求实数的值.20.在中,内角,,所对的边分别为,,且.(1)求角的大小;(2)若,,求的面积.21.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.2、B【解析】

求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【详解】因为,所以,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.3、C【解析】

由题意利用三角函数的图象变换原则,即可得出结论.【详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.4、B【解析】

由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.5、A【解析】

先求出的值,即得解.【详解】由题得,,所以.故选A【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.6、C【解析】

利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.7、A【解析】

三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.8、D【解析】

根据题意,由正弦定理得,再把,,代入求解.【详解】由正弦定理,得,所以.故选:D【点睛】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.9、A【解析】试题分析:由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.10、D【解析】

根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。二、填空题:本大题共6小题,每小题5分,共30分。11、第二或第四象限【解析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.12、(1),;(2)125.【解析】

(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.13、5【解析】

关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【点睛】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.14、【解析】

利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.15、【解析】

根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【详解】故可得则当且仅当,即时,此时有故答案为:.【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.16、或【解析】

方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析.【解析】

由题意利用正弦定理首先求得的大小,然后确定检查员检查合格的方法即可.【详解】检查开始处为,设公路上两点到考点的距离均为1km.在中,,由正弦定理,得,,.在中,,为等边三角形,.在段需要5min,在段需要5min.则最多需要5min,检查员开始收不到信号,并至少持续5min.【点睛】本题主要考查正弦定理的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2)【解析】

(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【点睛】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.19、(1)①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)【解析】

(1)不等式,可化为,分三种情况讨论,分别利用一元二次不等式的解法求解即可;(2)不等可化为,根据1和4是方程的两根,利用韦达定理列方程求解即可.【详解】(1)不等式,可化为:.①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)不等可化为:.由不等式的解集为可知,1和4是方程的两根.故有,解得.由时方程为的根为1或4,则实数的值为1.【点睛】本题主要考查一元二次不等式的解法以及分类讨论思想的应用,属于中档题..分类讨论思想的常见类型

,⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;

⑵问题中的条件是分类给出的;

⑶解题过程不能统一叙述,必须分类讨论的;

⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.20、(1)(2)【解析】

(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【详解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论