版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省福州市琅岐中学数学高一下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.2.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.3.在等比数列中,已知,那么的前4项和为().A.81 B.120 C.121 D.1924.已知锐角满足,则()A. B. C. D.5.在△ABC中,AC,BC=1,∠B=45°,则∠A=()A.30° B.60° C.30°或150° D.60°或120°6.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.47.在等比数列中,若,则的值为()A. B. C. D.8.在空间四边形中,,,,分别是,的中点,,则异面直线与所成角的大小为()A. B. C. D.9.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.10.若直线与圆有公共点,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.12.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.13.数列满足:,,则______.14.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.15.若函数的反函数的图象过点,则________.16.设点是角终边上一点,若,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当弦AB被点P平分时,写出直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.18.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.19.已知函数,,(1)求的最小正周期;(2)若,求的最大值和最小值,并写出相应的x的值.20.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.21.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,2、B【解析】
设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.3、B【解析】
根据求出公比,利用等比数列的前n项和公式即可求出.【详解】,.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n项和,属于中档题.4、D【解析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.5、A【解析】
直接利用正弦定理求出sinA的大小,根据大边对大角可求A为锐角,即可得解A的值.【详解】因为:△ABC中,BC=1,AC,∠B=45°,所以:,sinA.因为:BC<AC,可得:A为锐角,所以:A=30°.故选:A.【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.6、B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7、B【解析】
根据等比数列的性质:若,则.【详解】等比数列中,,,故选B.【点睛】本题考查等比数列的通项公式和性质,此题也可用通项公式求解.8、D【解析】
平移两条异面直线到相交,根据余弦定理求解.【详解】如图所示:设的中点为,连接,所以,则是所成的角或其补角,又根据余弦定理得:,所以,异面直线与所成角的为,故选D.【点睛】本题考查异面直线所成的角和余弦定理.注意异面直线所成的角的取值范围是.9、C【解析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.10、C【解析】由题意得圆心为,半径为.圆心到直线的距离为,由直线与圆有公共点可得,即,解得.∴实数a取值范围是.选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【点睛】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.12、4【解析】
根据回归直线经过数据的中心点可求.【详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【点睛】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.13、【解析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题14、②③⑤【解析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.15、【解析】
由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.16、【解析】
根据任意角三角函数的定义,列方程求出m的值.【详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【点睛】本题考查了任意角三角函数的定义与应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)为的中点,故,所以斜率,由此求解直线方程(2)已知直线方程,利用半径和点到直线的距离,求解弦长.详解:(1)P为AB中点C(1,0),P(2,2)(2)的方程为由已知,又直线过点P(2,2)直线的方程为即x-y=0C到直线l的距离,点睛:利用圆与直线的几何性质解圆有关的问题常见解法,圆心到直线的距离、半径、弦长之间的关系为.18、(1)证明见解析;(2)【解析】
(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.19、(1)(2)时最大值为2,时最小值【解析】
(1)由二倍角公式和辅助角公式可得,再由周期公式,可得所求值(2)由的范围,可得的范围,由于余弦函数的图象和性质,可得所求最值.【详解】(1)函数,可得的最小正周期为;(2),,可得,,可得当即时,可得取得最大值2;当,即时,可得取得最小值.【点睛】本题考查二倍角公式和两角差的余弦函数,考查余弦函数的图象和性质,考查运算能力,属于基础题.20、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.21、(1);(2);(3),.【解析】
(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 6583:2024 EN Methanol as a fuel for marine applications - General requirements and specifications
- 2024广东省林地流转买卖合同
- 2024法律顾问委托合同
- 2024民间抵押借款合同民间借贷合同范本
- 2024房屋装修合同(范本)
- 新车销售合同范本样式
- 不动产抵押借款合同范本解析
- 2024蔬菜买卖合同示范文本
- 2024年墙面装饰分包工程合同
- 合租住房协议书样本
- 广东省广州市2024-2025学年九年级上学期期中英语试题(无答案)
- 2024-2025学年人教版物理八年级上册 期中考试物理试卷
- MOOC 3D工程图学-华中科技大学 中国大学慕课答案
- 争战得胜之方江秀琴
- 浅析初中数学学科特点与思想方法
- 施工方案及施工三措
- 生涯彩虹图(含分析)
- 村廉政风险点及防控措施一览表档
- 生管SWOT分析
- (完整版)离子共存问题习题及参考答案(最新(精华版)
- 门座式起重机检验规程
评论
0/150
提交评论