版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省重点中学数学高一下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为A.2031 B.35 C.82.过点且与点距离最大的直线方程是()A. B.C. D.3.的值为A. B. C. D.4.已知,下列不等式中成立的是()A. B. C. D.5.已知,则().A. B. C. D.6.函数的零点所在的区间为()A. B. C. D.7.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A. B. C. D.8.已知是第二象限角,且,则的值为A. B. C. D.9.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.20010.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.12.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.13.设变量x、y满足约束条件,则目标函数的最大值为_______.14.已知等比数列的前项和为,若,且,则_____.15.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).16.若在区间(且)上至少含有30个零点,则的最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若不等式恒成立,求实数a的取值范围。18.如图,正方体的棱长为2,E,F分别为,AC的中点.(1)证明:平面;(2)求三棱锥的体积.19.某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.20.定义在R上的函数f(x)=|x2﹣ax|(a∈R),设g(x)=f(x+l)﹣f(x).(1)若y=g(x)为奇函数,求a的值:(2)设h(x),x∈(0,+∞)①若a≤0,证明:h(x)>2:②若h(x)的最小值为﹣1,求a的取值范围.21.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由题意可得该女子每天织布的尺数构成一个等比数列,且数列的公比为2,由题意求出数列的首项后可得第3天织布的尺数.【详解】由题意可得该女子每天织布的尺数构成一个等比数列,且数列的公比为2,前5项的和为5,设首项为a1,前n项和为S则由题意得S5∴a1∴a3即该女子第3天所织布的尺数为2031故选A.【点睛】本题以中国古文化为载体考查等比数列的基本运算,解题的关键是正确理解题意,将问题转化成等比数列的知识求解,考查阅读理解和转化、计算能力.2、C【解析】
过点且与点距离最大的直线满足:,根据两直线互相垂直,斜率的关系可以求出直线的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项.【详解】因为过点且与点距离最大的直线满足:,所以有,而,所以直线方程为,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.3、B【解析】
试题分析:由诱导公式得,故选B.考点:诱导公式.4、A【解析】
逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.5、A【解析】
.所以选A.【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.6、C【解析】
分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题7、C【解析】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为2,高为,所以直观图的面积是选C.点睛:本题考查直观图画法,考查基本求解能力.8、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.9、B【解析】
根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。10、C【解析】
利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,
只需将函数图象上所有的点向左平移个单位长度,
故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.12、【解析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。13、3【解析】
可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)14、4或1024【解析】
当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.15、否【解析】
根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.16、【解析】
首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
恒成立的条件下由于给定了的范围,故可考虑对进行分类,同时利用参变分离法求解的范围.【详解】由题意得(1),时,恒成立(2),等价于又∴∴实数a的取值范围是【点睛】含有分式的不等式恒成立问题,要注意到分母的正负对于不等号的影响;若是变量的范围给出了,可针对于变量的范围做具体分析,然后去求解参数范围.18、(1)证明见解析;(2)【解析】
(1)可利用线线平行来证明线面平行(2)可采用等体积法进行求解【详解】证明:(1)如图,连结BD;因为四边形ABCD为正方形,所以BD交AC于F且F为BD中点;又因为E为中点,所以;因为平面,平面,所以平面;(2)三棱锥的体积.【点睛】本题考查了线面平行的证明及锥体体积的求解方法,证线面平行一般是通过证线线平行来证明,三棱锥的体积常用等体积法转换底面和高进行求解.19、(1)见解析;(2);1350人;(3)平均体重为.【解析】
(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出结果.(2)体重在之间的学生人数的率,从而,体重在,内人数的频率为0.675,由此能求出估计全体非毕业班学生体重在,内的人数.(3)设高一全体学生的平均体重为:,频率为,高二全体学生的平均体重为,频率为,由此能估计全体非毕业班学生的平均体重.【详解】(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生、高一女生、高二男生、高二女生高一男:人,高一女:人高二男:,高二女:人可能的方案一:按性别分为两层,男生与女生男生人数:人,女生人数:人可能的方案二:按年级分为两层,高一学生与高二学生高一人数:人,高二人数:人(2)体重在70-80之间学生人数的频率:体重在内人数的频率为:∴估计全体非毕业班学生体重在内的人数为:人(3)设高一全体学生的平均体重为,频率为高二全体学生的平均体重为,频率为则估计全体非毕业班学生平均体重为答:估计全校非毕业班学生平均体重为.【点睛】本题考查频率分布直方图、频率、分层抽样、平均数等基础知识,考查运算求解能力,属于基础题.20、(1)a=1(2)①证明见解析②(1,+∞)【解析】
(1)根据函数是定义在上的奇函数,令,即可求出的值;(2)①先去绝对值,再把分离常数即可证明;②根据的最小值为,分和两种情况讨论即可得出的取值范围.【详解】(1)∵g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣ax|,一方面,由g(0)=0,得|1﹣a|=0,a=1,另一方面,当a=1时,g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣x|=|x2+x|﹣|x2﹣x|,所以,g(﹣x)=|x2﹣x|﹣|x2+x|=﹣g(x),即g(x)是奇函数.综上可知a=1.(2)(i)∵a≤0,x>0,x+1>0,所以h(x)2,∵1﹣a>0,x>0,∴h(x)>2.(ii)由(i)知,a>0,情形1:a∈(0,1],此时当x∈(a,+∞)时,有2,当x∈(0,a]时,有h(x),由上可知此时h(x)>0不合题意.情形2:a∈(1,+∞)时,当x∈(0,a﹣1)时,有h(x),当x∈[a﹣1,a)时,有h(x)当x∈[a,+∞)时,有h(x),从而可知此时h(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宾馆承包合同协议书写法
- 临时工聘用合同样本
- 2024广告服务合同模板
- 无担保眼镜购买分期付款合同范本
- 2024公寓租赁合同模板【公寓租赁合同】
- 城市粮食采购合同模板
- 服装行业销售管理系统经销合同
- 环保工程维保合同模板
- 高校毕业就业协议书样本
- 商标许可协议书
- 山东德州财金投资控股集团有限公司招聘考试真题2022
- 《工业机器人应用与维护》专业人才培养方案
- 《马克思主义发展史》第二章剩余价值学说的创立和马课件
- 高中语文人教版高中必修文言文定语后置
- 传统孝道人物虞舜
- 确定积极分子会议记录范文七篇
- 长江三峡水利枢纽可行性报告
- 江苏省某高速公路结构物台背回填监理细则
- 电大护理本科临床实习手册内容(原表)
- 当代德国学校劳动教育课程构建的经验与启示共3篇
- “小金库”治理与防范 习题及答案
评论
0/150
提交评论