版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市郏县一中高三3月份第一次模拟考试新高考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④2.已知集合,,则A. B.C. D.3.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.54.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.5.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.6.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)7.命题“”的否定为()A. B.C. D.8.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元9.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.10.在复平面内,复数对应的点的坐标为()A. B. C. D.11.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.12.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角的对边分别是,若,,则____.14.设为等比数列的前项和,若,且,,成等差数列,则.15.设常数,如果的二项展开式中项的系数为-80,那么______.16.已知函数,则的值为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.18.(12分)已知,均为正项数列,其前项和分别为,,且,,,当,时,,.(1)求数列,的通项公式;(2)设,求数列的前项和.19.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.20.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.21.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.22.(10分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.2、D【解析】
因为,,所以,,故选D.3、A【解析】
根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.4、C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.5、B【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.6、D【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.7、C【解析】
套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.8、A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.9、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.10、C【解析】
利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.11、D【解析】
根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.12、A【解析】
试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.14、.【解析】试题分析:∵,,成等差数列,∴,又∵等比数列,∴.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.15、【解析】
利用二项式定理的通项公式即可得出.【详解】的二项展开式的通项公式:,令,解得.∴,解得.故答案为:-2.【点睛】本小题主要考查根据二项式展开式的系数求参数,属于基础题.16、4【解析】
根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】
(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【详解】(1)因为,,,是的中点,,为直三棱柱,所以平面,因为为中点,所以平面,,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.18、(1),(2)【解析】
(1),所,两式相减,即可得到数列递推关系求解通项公式,由,整理得,得到,即可求解通项公式;(2)由(1)可知,,即可求得数列的前项和.【详解】(1)因为,所,两式相减,整理得,当时,,解得,所以数列是首项和公比均为的等比数列,即,因为,整理得,又因为,所以,所以,即,因为,所以数列是以首项和公差均为1的等差数列,所以;(2)由(1)可知,,,即.【点睛】此题考查求数列的通项公式,以及数列求和,关键在于对题中所给关系合理变形,发现其中的关系,裂项求和作为一类常用的求和方法,需要在平常的学习中多做积累常见的裂项方式.19、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(Ⅱ),由数列的错位相减法求和可得,解方程可得所求值.【详解】(Ⅰ)等比数列,其公比,且满足,和的等差中项是即有,解得:(Ⅱ)由(Ⅰ)知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题.20、(1);(2).【解析】
(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【详解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【点睛】本题考查三角恒等变换求值、面积公式、余弦定理、正弦定理解三角形,考查计算求解能力,属于中档题.21、(1)(2)k1+k2为定值0,见解析【解析】
(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.22、(1);(2)见解析.【解析】
(1)分、、三种情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年搅拌车混凝土运输质量合同
- 2024-2030年硼铁行业市场发展分析及前景趋势与投资研究报告
- 2024-2030年永磁行星减速起动机驱动轴总成公司技术改造及扩产项目可行性研究报告
- 2024-2030年新版中国胶柄钢丝钳项目可行性研究报告
- 2024-2030年新版中国电动三轮自行车项目可行性研究报告
- 2024-2030年新版中国刀合金刀项目可行性研究报告
- 2024年度工程分包合同条款及标的详述
- 2024-2030年全球及中国钛酸铋行业产销需求及未来发展趋势预测报告
- 2024-2030年全球及中国胆道活检钳行业发展动态及应用前景预测报告
- 2024-2030年全球及中国推狗椅行业营销策略及投资效益预测报告
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 装配式建筑简答题和论述题题库
- 高边坡支护专家论证方案(附有大量的图件)
- 人流量统计技术应用方案及其他应用
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
- 历史纪年与历史年代的计算方法
- 快递物流运输公司 国际文件样本 形式发票样本
- 管理信息系统题目带答案
评论
0/150
提交评论