版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南广东联考高三1月教学质量检测试题新高考数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知抛物线经过点,焦点为,则直线的斜率为()A. B. C. D.3.在原点附近的部分图象大概是()A. B.C. D.4.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.5.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A. B. C. D.6.已知,则,不可能满足的关系是()A. B. C. D.7.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.8.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.9.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.10.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元11.设函数,则,的大致图象大致是的()A. B.C. D.12.若,则的虚部是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为________;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为________.14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.15.若复数(是虚数单位),则________16.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.18.(12分)已知函数.(1)解不等式:;(2)求证:.19.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.20.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.21.(12分)如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.(1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?22.(10分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.2、A【解析】
先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,,,,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.3、A【解析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.4、C【解析】
易得,,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.5、B【解析】
根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人:将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力,属中档题.6、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题7、C【解析】
设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.8、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、C【解析】
由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.10、A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.11、B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.12、D【解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.380.9【解析】
考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【详解】第一次烧制后恰有一件产品合格的概率为:.甲、乙、丙三件产品合格的概率分别为:,,.故随机变量的可能取值为,故;;;.故.故答案为:0.38;0.9.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.14、【解析】
先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15、【解析】
直接根据复数的代数形式四则运算法则计算即可.【详解】,.【点睛】本题主要考查复数的代数形式四则运算法则的应用.16、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.18、(1);(2)见解析.【解析】
(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,,,比较大小即可.【详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得.综上所述,不等式解集为.(2)由已知条件,对于,可得.又,由于,所以.又由于,于是.所以.【点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于中档题.19、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】
(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.20、(1)(2)证明见解析【解析】
(1)利用求得数列的通项公式.(2)先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑施工图设计合同
- 2024年建筑群电力供应安装合同
- 北京版四年级上册数学第二单元 乘法 测试卷及完整答案【各地真题】
- 冀教版四年级上册数学第六单元 认识更大的数 测试卷a4版打印
- 2024年建筑信息模型资料创建合同
- 2024年度销售代理合同代理权限与销售目标
- 2024年式郊外绿色长廊绿化分包合同
- 期中模拟(试题)-2024-2025学年五年级上册语文统编版
- 风光互补住宅用电策略
- 酪蛋白肽酶结构解析
- XX电站接地装置的热稳定校验报告(220kV)
- 涉警舆情培训课件模板
- 马戏团活动方案
- 小学关工委制度范本
- 当代大学生幸福感课件
- 人感染H7N9禽流感流行病学调查方案
- 五年级科学 《光的反射》 一等奖
- 如何提高个人征信评分
- 肺疾病护理的新进展与研究
- 贵州省黔东南州2022-2023学年七年级上学期期末文化水平测试数学试卷(含答案)
- 炎症性肠病完
评论
0/150
提交评论