




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,2.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或3.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.4.已知数列为等差数列,且,则的值为()A. B. C. D.5.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个6.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.7.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.8.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.9.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.12010.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米11.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.12.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.360二、填空题:本题共4小题,每小题5分,共20分。13.已知,,求____________.14.在各项均为正数的等比数列中,,且,成等差数列,则___________.15.已知,,且,则的最小值是______.16.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.18.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.20.(12分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30cm,宽26cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为xcm和ycm,窗芯所需条形木料的长度之和为L.(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2cm,每个菱形的面积为130cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?21.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.22.(10分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据指数函数的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D.【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.2、D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.3、B【解析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.4、B【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得,解得,,故选:B.【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.5、B【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.6、D【解析】
设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.7、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.8、C【解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.9、C【解析】
观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.10、B【解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.11、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.12、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果.【详解】,,,因此,.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.14、【解析】
利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【详解】因为,成等差数列,所以,由等比数列通项公式得,,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.15、1【解析】
先将前两项利用基本不等式去掉,,再处理只含的算式即可.【详解】解:,因为,所以,所以,当且仅当,,时等号成立,故答案为:1.【点睛】本题主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题.16、【解析】
先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2).【解析】
(1)由题意利用三角函数图象变换规律求得的解析式,然后利用余弦函数的单调性,得出结论;(2)由题意利用余弦函数的图象的对称性求得,再根据余弦函数的定义域和值域,得出结论.【详解】由题意得(1)向左平移个单位得到,增区间:解不等式,解得,减区间:解不等式,解得.综上可得,的单调增区间为,减区间为;(2)由题易知,,因为的一条对称轴是,所以,,解得,.又因为,所以,即.因为,所以,则,所以在的值域是.【点睛】本题主要考查三角函数图象变换规律,余弦函数图象的对称性,余弦函数的单调性和值域,属于中档题.18、(1);(2).【解析】
(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得:,且为锐角(2)【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.19、(1),(2)存在,【解析】
(1)先求得曲线的普通方程,利用伸缩变换的知识求得曲线的直角坐标方程,再转化为极坐标方程.根据极坐标和直角坐标转化公式,求得直线的直角坐标方程.(2)求得曲线的圆心和半径,计算出圆心到直线的距离,结合图像判断出存在符合题意,并求得的值.【详解】(1)曲线的普通方程为,纵坐标伸长到原来的2倍,得到曲线的直角坐标方程为,其极坐标方程为,直线的直角坐标方程为.(2)曲线是以为圆心,为半径的圆,圆心到直线的距离.∴由图像可知,存在这样的点,,则,且点到直线的距离,∴,∴.【点睛】本小题主要考查坐标变换,考查直线和圆的位置关系,考查极坐标方程和直角坐标方程相互转化,考查参数方程化为普通方程,考查数形结合的数学思想方法,属于中档题.20、(1)(2)【解析】试题分析:(1)由条件可先求水平方向每根支条长,竖直方向每根支条长为,因此所需木料的长度之和L=(2)先确定范围由可得,再由面积为130cm2,得,转化为一元函数,令,则在上为增函数,解得L有最小值.试题解析:(1)由题意,水平方向每根支条长为cm,竖直方向每根支条长为cm,菱形的边长为cm.从而,所需木料的长度之和L=cm.(2)由题意,,即,又由可得.所以.令,其导函数在上恒成立,故在上单调递减,所以可得.则=.因为函数和在上均为增函数,所以在上为增函数,故当,即时L有最小值.答:做这样一个窗芯至少需要cm长的条形木料.考点:函数应用题21、(1),.(2)【解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.22、(1).(2).【解析】分析:(1)直接建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版九年级下学期语文作业优化计划
- 2025年中小学素质拓展训练计划
- 2025年度快递公司物流管理计划
- 2024-2025学年第二学期部编版三年级班级文化建设计划
- 2025年幼儿园秋季师生互动提升计划
- 五年级上册作文学习评估计划
- 2025国内旅游服务合同
- 西式面点师技术交流会计划
- 2025建筑工程施工合同(空白模板)
- 三年级语文作文复习计划
- 米、面制品安全生产与管理考核试卷
- 资金过桥合同协议
- 2024年山东青岛职业技术学院招聘笔试真题
- 2025-2030国内智能玩具行业市场发展现状及竞争策略与投资发展研究报告
- 仓库操作规程试题及答案
- 2025履约类保函担保合同范本
- 2025年03月河北邯郸武安市事业单位春季博硕人才引进55名笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 水土保持监测技术规范解读与应用
- 2024年记者证考试时事新闻处理试题及答案
- 《运动处方》课件-老年人运动处方
- 项目管理流程与操作手册
评论
0/150
提交评论