版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省慈溪市三山高级中学、奉化高级中学等六校2025届高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,则()A.8 B.6 C.4 D.32.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-23.已知正实数满足,则的最小值()A.2 B.3 C.4 D.4.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在河岸边选定一点C,测出AC的距离为502m,∠ACB=45∘,∠CAB=105A.100m B.50C.1002m5.已知a,b为非零实数,且,则下列不等式一定成立的是()A. B. C. D.6.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.7.在等差数列中,,则()A.5 B.8 C.10 D.148.将函数的图象向左平移个长度单位后,所得到的图象关于()对称.A.轴 B.原点 C.直线 D.点9.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.10.若cosθ>0,且sin2θ<0,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.若点在幂函数的图像上,则函数的反函数=________.12.求374与238的最大公约数结果用5进制表示为_________.13.若数列满足,,,则______.14.已知当时,函数(且)取得最小值,则时,的值为__________.15.对于任意实数x,不等式恒成立,则实数a的取值范围是______16.已知数列是等比数列,若,,则公比________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式.(1)当时,求此不等式的解集;(2)若不等式的解集非空,求实数的取值范围.18.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:间隔时间(分钟)81012141618等候人数(人)161923262933调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.参考公式:用最小二乘法求线性回归方程的系数公式:,(1)若选取的是前4组数据,求关于的线性回归方程;(2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?19.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.20.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.21.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.3、B【解析】
,当且仅当,即,时的最小值为3.故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.4、A【解析】
计算出ΔABC三个角的值,然后利用正弦定理可计算出AB的值.【详解】在ΔABC中,AC=502m,∠ACB=45∘,由正弦定理得ABsin∠ACB=ACsin【点睛】本题考查正弦定理解三角形,要熟悉正弦定理解三角形对三角形已知元素类型的要求,考查运算求解能力,属于基础题.5、C【解析】
,时,、、不成立;利用作差比较,即可求出.【详解】解:,时,,,故、、不成立;,,.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.6、C【解析】
设,得到,,,再利用举反例的方式排除③【详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【点睛】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.7、B【解析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.8、A【解析】
先利用辅助角公式将未变换后的函数解析式化简,再根据图象变换规律得出变换后的函数的解析式为,结合余弦函数的对称性来进行判断。【详解】,函数的图象向左平移个长度单位后得到,函数的图象关于轴对称,故选:A.【点睛】本题考查三角函数的图象变换,以及三角函数的对称性,在考查三角函数的基本性质问题时,应该将三角函数的解析式化为一般形式,并借助三角函数的图象来理解。9、B【解析】
根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.10、D【解析】试题分析:且,,为第四象限角.故D正确.考点:象限角.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
根据最大公约数的公式可求得两个数的最大公约数,再由除取余法即可将进制进行转换.【详解】374与238的最大公约数求法如下:,,,,所以两个数的最大公约数为34.由除取余法可得:所以将34化为5进制后为,故答案为:.【点睛】本题考查了最大公约数的求法,除取余法进行进制转化的应用,属于基础题.13、【解析】
由,化简得,则为等差数列,结合已知条件得.【详解】由,化简得,且,,得,所以是以为首项,以为公差的等差数列,所以,即故答案为:【点睛】本题考查了数列的递推式,考查了判断数列是等差数列的方法,属于中档题.14、3【解析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.15、【解析】
对a分类讨论,利用判别式,即可得到结论.【详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【点睛】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.16、【解析】
利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)不等式为,解得(2)不等式的解集非空,则,求解即可【详解】(1)当时,不等式为,解得,故不等式的解集为;(2)不等式的解集非空,则,即,解得,或,故实数的取值范围是.【点睛】二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.18、(1)(2)是“理想回归方程”(3)估计间隔时间最多可以设置为21分钟【解析】
(1)根据所给公式计算可得回归方程;(2)由理想回归方程的定义验证;(3)直接解不等式即可.【详解】(1),(2)当时,当时,,所以判断(1)中的方程是“理想回归方程”(3)由,得估计间隔时间最多可以设置为21分钟【点睛】本题考查回归直线方程,解题时直接根据所给公式计算,考查了学生的运算求解能力.19、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20、(1);(2).【解析】
(1)根据向量的数量积得,结合,即可求解;(2)令即可求得增区间.【详解】(1)由题图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024光通信设备研发与制造许可合同
- 2024年影视版权授权播放合同
- 2024年房地产赎回服务委托合同
- 2024年新一代信息技术产品采购招投标合同
- 2024年数据中心运营管理协议
- 2024年技术服务合同样本:软件开发服务标的为80万元
- 2024年新式技术转让保密合同
- 2024年新品地板订购协议
- 2024年拉丁美洲特许经营合同
- 2024年排水沟建设承包协议
- 2024年云网安全应知应会考试题库
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 经纬度数转换工具
- 一年级家长进课堂电的知识(课堂PPT)
- 《爬山虎的脚》教学课件
- 人教版英语选择性必修第四册UNIT 4 Sharing中英文对照
- 内分泌疾病内分泌疾病诊疗规范
- (完整word版)手卡模板(总2页)
- 高压蒸汽灭菌锅(SANYO)
- 电饭煲项目财务分析表
评论
0/150
提交评论