




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省教考联盟2025届数学高一下期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形2.已知,则等于()A. B. C. D.33.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.4.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定5.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.6.圆C:x2+yA.2 B.3 C.1 D.27.设等比数列满足,,则()A.8 B.16 C.24 D.488.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m9.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件10.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.设的内角、、的对边分别为、、,且满足.则______.12.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)13.设满足不等式组,则的最小值为_____.14.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.15.sin750°=16.在中,,点在边上,若,的面积为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:118.已知角的顶点在原点,始边与轴的非负半轴重合,终边上一点的坐标是.(1)求;(2)求;19.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.20.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.2、C【解析】
等式分子分母同时除以即可得解.【详解】由可得.故选:C.【点睛】本题考查了三角函数商数关系的应用,属于基础题.3、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.4、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.5、D【解析】
利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.6、D【解析】
由点到直线距离公式,求出圆心到直线y=x的距离d,再由弦长=2r【详解】因为圆C:x2+y2-2x=0所以圆心(1,0)到直线y=x的距离为d=1-0因此,弦长=2r故选D【点睛】本题主要考查求圆被直线所截弦长问题,常用几何法处理,属于常考题型.7、A【解析】
利用等比数列的通项公式即可求解.【详解】设等比数列的公比为,则,解得所以.故选:A【点睛】本题考查了等比数列的通项公式,需熟记公式,属于基础题.8、A【解析】
在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【点睛】本题考查了锐角三角函数的应用,考查了数学运算能力.9、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。10、D【解析】
根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【点睛】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.12、72【解析】
先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.13、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.14、0.5【解析】
由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.15、1【解析】试题分析:由三角函数的诱导公式得sin750°=【考点】三角函数的诱导公式【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.16、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)平均分为,中位数为(3)140人【解析】
(1)由题得,解方程即得解;(2)利用频率分布直方图中平均数和中位数的计算公式估计这200名学生的平均分和中位数;(3)分别计算每一段的人数即得解.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.设中位数为,则解得(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题主要考查频率分布直方图的性质,考查频率分布直方图中平均数和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1),(2)【解析】
(1)求得点到原点的距离,根据三角函数的定义求值;(2)同(1)可求出,然后用诱导公式化简,再代入值计算.【详解】(1)(2),为第四象限,【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.19、(1),;(2),.【解析】
(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.20、(1);(2).【解析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为d,则由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列{bn}的公比为q,则由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比数列{bn}的各项均为正数,∴q=2.∴{bn}的前n项和Tn===21、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 23090-26:2025 EN Information technology - Coded representation of immersive media - Part 26: Conformance and reference software for carriage of geometry-based point
- 2025至2030中国白色水泥行业发展分析及竞争格局与发展趋势预测报告
- 2025至2030中国男士帆布鞋行业供需趋势及投资风险报告
- 2025至2030中国电商物流行业产业运行态势及投资规划深度研究报告
- 2025至2030中国特医食品行业发展分析及前景趋势与投资报告
- 培训课件软件
- 智慧城市基础设施建设中的通信电缆技术创新
- 幼儿园新教师健康教育培训
- 心理辅导在学生学习中的重要性
- 从学生到职业领袖的教育之路
- 2025年四川广安爱众股份有限公司招聘笔试参考题库含答案解析
- 2024起重吊装及起重机械安装拆卸工程监理作业指引
- 威胁情报收集与整合-洞察分析
- 期末教师会议校长精彩讲话:最后讲了存在的问题
- 知名连锁汉堡店食安QSC稽核表
- 摄影设备采购合同范例
- DB41T 1812-2019 苹果简约栽培技术规程
- 【《三只松鼠公司员工激励现状调查及优化建议(附问卷)14000字》(论文)】
- 护理不良事件登记本及护理不良事件报告新规制度
- 农业土壤检测技术行业发展前景及投资风险预测分析报告
- 广东省深圳市罗湖区2023-2024学年二年级下学期期末考试数学试题
评论
0/150
提交评论