版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省儋州一中2025届数学高一下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数()A. B. C. D.2.直线(是参数)被圆截得的弦长等于()A. B. C. D.3.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,4.圆与圆的位置关系是()A.外离 B.相交 C.内切 D.外切5.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定6.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.7.在中,内角的对边分别为,若,那么()A. B. C. D.8.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.29.已知=4,=3,,则与的夹角为()A. B. C. D.10.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.13.数列中,若,,则______;14.已知数列满足,则__________.15.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________16.和2的等差中项的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若在区间上的最小值为,求的值;(2)若存在实数,使得在区间上单调且值域为,求的取值范围.18.(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.19.已知函数f(x)=2cosx(sinx﹣cosx).(1)求函数f(x)的最小正周期及单调递减区间:(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.20.为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;(2)求频率分布直方图中a,b的值.21.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.2、D【解析】
先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.3、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.4、D【解析】
根据圆的方程求得两圆的圆心和半径,根据圆心距和两圆半径的关系可确定位置关系.【详解】由圆的方程可知圆圆心为,半径;圆圆心为,半径圆心距为:两圆的位置关系为:外切本题正确选项:【点睛】本题考查圆与圆的位置关系的判定,关键是能够通过圆的方程确定两圆的圆心和半径,从而根据圆心距和半径的关系确定位置关系.5、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.6、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.7、B【解析】
化简,再利用余弦定理求解即可.【详解】.故.又,故.故选:B【点睛】本题主要考查了余弦定理求解三角形的问题,属于基础题.8、A【解析】
画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【点睛】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.9、C【解析】
由已知中,,,我们可以求出的值,进而根据数量积的夹角公式,求出,,进而得到向量与的夹角;【详解】,,,,,所以向量与的夹角为.故选C【点睛】本题主要考查平面向量的数量积运算和向量的夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据周期公式即可求解.【详解】函数的最小正周期故答案为:【点睛】本题主要考查了正弦型函数的周期,属于基础题.12、【解析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.13、【解析】
先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.14、【解析】
数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。15、【解析】
根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.16、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据二次函数单调性讨论即可解决.(2)分两种情况讨论,分别讨论单调递增和单调递减的情况即可解决.【详解】(1)若,即时,,解得:,若,即时,,解得:(舍去).(2)(ⅰ)若在上单调递增,则,则,即是方程的两个不同解,所以,即,且当时,要有,即,可得,所以;(ⅱ)若在上单调递减,则,则,两式相减得:,将代入(2)式,得,即是方程的两个不同解,所以,即,且当时要有,即,可得,所以,(iii)若对称轴在上,则不单调,舍弃.综上,.【点睛】本题主要考查了二次函数的综合问题,在解决二次函数问题时需要关注的是单调性、对称轴、最值、开口、等属于中等偏上的题.18、(1)(2)【解析】
(1)几何概型的计算公式求解即可;(2)求出该骰子先后抛掷两次的基本事件总数,根据数量积公式得出满足包含的基本事件个数,由古典概型概率公式求解即可.【详解】解:(1)由题意可知,任意向这一区间内掷一点,该点落在内哪个位置是等可能的.令,则由几何概型的计算公式可知:.(2)将一枚质地均匀的骰子先后抛掷两次,共有个基本事件.由,得满足包含的基本事件为,,,,,共6种情形,故.【点睛】本题主要考查了利用几何概型概率公式以及古典概型概率公式计算概率,属于中档题.19、(1)函数的最小正周期为π;函数的减区间为[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】
(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性和单调性,得出结论;(2)利用正弦函数的定义域和值域,求得的范围,进而可得的范围.【详解】(1)函数f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函数的最小正周期为π.令2kπ2x2kπ,求得kπx≤kπ,可得函数的减区间为[kπ,kπ],k∈Z.(2)将f(x)的图象向左平移个单位后,得到函数g(x)=2sin(2x)﹣1=2sin(2x)﹣1的图象.在区间[0,]上,2x∈[,],sin(2x)∈[,1],f(x)∈[﹣2,1].若方程g(x)=m在区间[0,]上有解,则m∈[﹣2,1].【点睛】本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数的恒成立问题,正弦函数的定义域和值域,属于中档题.20、(1);(2),.【解析】
(1)由频率分布表即可得解;(2)由频率分布直方图中小矩形的高为频率与组距的比值,观察频率分布表的数据即可得解.【详解】解:(1)记“从该单位随机选取一名职工,这名职工该周路边停车的时间少于8小时”为事件A,则;(2)由频率分布表可得:区间的频数为8,则,区间的频数为12,则.【点睛】本题考查了频率分布表及频率分布直方图,属基础题.21、(1);(2)【解析】
(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建房合同范例贷款
- 学生团队租车合同范例
- 危房申请合同范例
- 传媒硬件采购合同模板
- 快递企业服务合同范例
- 艺术灵感生活蕴藏
- 开业花篮租赁合同范例
- 巢湖官方代理记账合同范例
- 债务重组退费合同模板
- 合同中赠与合同范例
- 【教案】心灵的幻象+教学设计-高一美术湘美版(2019)美术鉴赏
- 人教版2022-2023学年三年级语文上册期中试卷及答案
- GB/T 20001.1-2024标准起草规则第1部分:术语
- 欧美电影文化智慧树知到期末考试答案2024年
- 2024年吉安市城投公司招聘笔试参考题库附带答案详解
- 收银系统合同
- 电商渠道拓展与销售增长策略
- 《1+X幼儿照护(中级)》课件-气管异物急救处理
- (高清版)DZT 0309-2017 地质环境监测标志
- 《部门介绍模板》课件
- (1.10.3)-4.4-起落架收放系统
评论
0/150
提交评论