版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市昌平临川育人学校高一下数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.2.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.如图,在下列四个正方体中,,,,,,,为所在棱的中点,则在这四个正方体中,阴影平面与所在平面平行的是()A. B.C. D.4.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④5.已知圆C1:x2+y2+4y+3=0,圆C2:x2+A.210-3 B.210+36.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°7.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.8.已知直线是平面的斜线,则内不存在与(
)A.相交的直线 B.平行的直线C.异面的直线 D.垂直的直线9.甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.10.函数的图象的一条对称轴方程是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.若正实数满足,则的最小值为______.13.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.14.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.15.如图所示,已知,用表示.16.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.18.设等比数列{}的首项为,公比为q(q为正整数),且满足是与的等差中项;数列{}满足.(1)求数列{}的通项公式;(2)试确定的值,使得数列{}为等差数列:(3)当{}为等差数列时,对每个正整数是,在与之间插入个2,得到一个新数列{},设是数列{}的前项和,试求满足的所有正整数.19.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.20.设数列满足,,,.s(1)证明:数列是等差数列,并求数列的通项;(2)求数列的通项,并求数列的前项和;(3)若,且是单调递增数列,求实数的取值范围.21.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.2、B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.3、A【解析】
根据线面平行判定定理以及作截面逐个分析判断选择.【详解】A中,因为,所以可得平面,又,可得平面,从而平面平面B中,作截面可得平面平面(H为C1D1中点),如图:C中,作截面可得平面平面(H为C1D1中点),如图:D中,作截面可得为两相交直线,因此平面与平面不平行,如图:【点睛】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.4、D【解析】
根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。5、A【解析】
求出圆C1,C2的圆心坐标和半径,作出圆C1关于直线l的对称圆C1',连结C1'C2,则C1'C2与直线l的交点即为P点,此时M点为P【详解】由圆C1:x可知圆C1圆心为0,-2圆C2圆心为3,-1圆C1关于直线l:y=x+1的对称圆为圆C连结C1'C2,交l于P,则此时M点为PC1'与圆C1'的交点关于直线l对称的点,N最小值为C1而C1∴PM+PN【点睛】本题考查了圆方程的综合应用,考查了利用对称关系求曲线上两点间的最小距离,体现了数形结合的解题思想方法,是中档题.解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.6、B【解析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【点睛】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.7、D【解析】
点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.8、B【解析】
根据平面的斜线的定义,即可作出判定,得到答案.【详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.故答案为:B【点睛】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、B【解析】
先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【点睛】本题考查了古典概型,属基础题.10、A【解析】
由,得,,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、【解析】
由得,将转化为,整理,利用基本不等式即可求解。【详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【点睛】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。13、【解析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.14、(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)15、【解析】
可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题16、【解析】
由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)证明见解析,(3)证明见解析,【解析】
(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【点睛】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.18、(1);(2);(3).【解析】
(1)由已知可求出的值,从而可求数列的通项公式;(2)由已知可求,从而可依次写出,,若数列为等差数列,则有,从而可确定的值;(3)因为,,,检验知,3,4不合题意,适合题意.当时,若后添入的数则一定不适合题意,从而必定是数列中的某一项,设则误解,即有都不合题意.故满足题意的正整数只有.【详解】解(1)因为,所以,解得或(舍),则又,所以(2)由,得,所以,,,则由,得而当时,,由(常数)知此时数列为等差数列(3)因为,易知不合题意,适合题意当时,若后添入的数,则一定不适合题意,从而必是数列中的某一项,则.整理得,等式左边为偶数,等式右边为奇数,所以无解。综上:符合题意的正整数.【点睛】本题主要考察了等差数列与等比数列的综合应用,考察了函数单调性的证明,属于中档题.19、(1)(2)最小正周期,的单调递增区间为:.【解析】
(1)计算平面向量的数量积得出函数的解析式,求出时的值;(2)根据的解析式,求出它的最小正周期T及单调递增区间.【详解】函数时,,解得又;(2)函数它的最小正周期:令故:的单调递增区间为:【点睛】本题考查了正弦型函数的性质,考查了学生综合分析,转化与划归,数形结合的能力,属于中档题.20、(1)证明见解析,;(2),;(3).【解析】
(1)利用等差数列的定义可证明出数列是等差数列,并确定该数列的首项和公差,即可得出数列的通项;(2)利用累加法求出数列的通项,然后利用裂项法求出数列的前项和;(3)求出,然后分为正奇数和正偶数两种情况分类讨论,结合可得出实数的取值范围.【详解】(1),等式两边同时减去得,,且,所以,数列是以为首项,以为公差的等差数列,因此,;(2),,,;(3).当为正奇数时,,,由,得,可得,由于数列为单调递减数列,;当为正偶数时,,,由,得,可得,由于数列为单调递增数列,.因此,实数的取值范围是.【点睛】本题考查利用等差数列的定义证明等差数列,同时也考查了累加法求通项、裂项求和法以及利用数列的单调性求参数,充分利用单调性的定义来求解,考查运算求解能力,属于中等题.21、(1)32;(2)【解析】
由两向量坐标以及向量共线,结合正弦定理,化简可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仪容仪表引领培训
- 《咨询心理学新版》课件
- 《公共关系礼仪》课件
- 头晕头痛病人护理
- 儿童常见中耳炎护理
- 寒假社会活动展示册
- 会议接待管理
- 人工股骨头手术配合
- 《陶瓷的分类及特点》课件
- 《员工关系与管理》课件
- 2024年军事理论知识全册复习题库及答案
- 铁路设备售后服务方案
- 骨科特殊检查课件
- 江苏省南京市玄武区2024-2025学年七年级上学期期中考试英语试卷
- 2024年国家公务员考试《行测》真题(行政执法)
- 公务员2022年国考申论试题(行政执法卷)及参考答案
- (培训体系)2020年普通话测试培训材料
- 2024混合动力汽车赛道专题报告-2024-10-市场解读
- DB34T 4338-2022 行政规范性文件合法性审核规范
- 英语-浙江省精诚联盟2024学年高一第一学期10月联考试题和答案
- 九年级英语上学期期中考试(北京卷)-2024-2025学年九年级英语全一册单元重难点易错题精练(人教版)
评论
0/150
提交评论