版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考数学高一下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.2.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则3.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③4.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.5.函数是()A.奇函数 B.非奇非偶函数 C.偶函数 D.既是奇函数又是偶函数6.在中,若为等边三角形(两点在两侧),则当四边形的面积最大时,()A. B. C. D.7.化简结果为()A. B. C. D.8.在中,,,,则()A. B. C. D.9.化简()A. B. C. D.10.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.96二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则__________.12.已知函数,,则的最大值是__________.13.设为等差数列的前n项和,,则________.14.已知,函数的最小值为__________.15.的值域是______.16.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.18.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.19.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.20.在中,内角、、所对的边分别为、、,且.(1)求;(2)若,,求.21.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.2、D【解析】
利用面面、线面位置关系的判定和性质,直接判定.【详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.3、D【解析】
由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.4、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.5、C【解析】
利用诱导公式将函数的解析式化简,然后利用定义判断出函数的奇偶性.【详解】由诱导公式得,该函数的定义域为,关于原点对称,且,因此,函数为偶函数,故选C.【点睛】本题考查函数奇偶性的判断,解题时要将函数解析式进行简化,然后利用奇偶性的定义进行判断,考查分析问题和解决问题的能力,属于基础题.6、A【解析】
求出三角形的面积,求出四边形的面积,运用三角函数的恒等变换和正弦函数的值域,求出满足条件的角的值即可.【详解】设,,,是正三角形,,由余弦定理得:,,时,四边形的面积最大,此时.故选A.【点睛】本题考查余弦定理和三角形的面积公式,考查两角的和差公式和正弦函数的值域,考查化简运算能力,属于中档题.7、A【解析】
根据指数幂运算法则进行化简即可.【详解】本题正确选项:【点睛】本题考查指数幂的运算,属于基础题.8、D【解析】
直接用正弦定理直接求解边.【详解】在中,,,由余弦定理有:,即故选:D【点睛】本题考查利用正弦定理解三角形,属于基础题.9、A【解析】
减法先变为加法,利用向量的三角形法则得到答案.【详解】故答案选A【点睛】本题考查了向量的加减法,属于简单题.10、B【解析】
利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【点睛】本题考查三角函数的辅助角公式,属于基础题.12、3【解析】函数在上为减函数,故最大值为.13、54.【解析】
设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.14、5【解析】
变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.15、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.16、乙;【解析】
一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【点睛】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由知:,利用等比数列的通项公式即可得出;(2)bn=|11﹣2n|,设数列{11﹣2n}的前n项和为Tn,则.当n≤5时,Sn=Tn;当n≥6时,Sn=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1);(2).【解析】
(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【点睛】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.19、(1)(2)【解析】
(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.20、(1)(2)【解析】
(1)利用正弦定理化简为,再利用余弦定理得到答案.(2)先用和差公式计算,再利用正弦定理得到.【详解】(1)由正弦定理,可化为,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【点睛】本题考查了正弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年机房建设与运维一体化施工合同书3篇
- 2025版事业单位聘用合同书(二零二五年度)服务期限与待遇约定3篇
- 2025年度艺术品代购代销服务协议范本4篇
- 2025年项目部安全责任合同书编制指南3篇
- 2025年度个人购房装修配套服务合同
- 2025年高新技术企业员工薪酬保障与晋升协议书3篇
- 2025年食材配送与智慧物流解决方案合作协议3篇
- 2025年度二手房买卖合同绿色装修与改造服务合同4篇
- 2025年度美容院美容师市场调研与分析服务合同4篇
- 提前终止房地产买卖合同(2025版)2篇
- 《阻燃材料与技术》-颜龙 习题解答
- 2024-2030年中国食品饮料灌装设备行业市场发展趋势与前景展望战略分析报告
- 建筑结构课程设计成果
- 纤维增强复合材料 单向增强材料Ⅰ型-Ⅱ 型混合层间断裂韧性的测定 编制说明
- 习近平法治思想概论教学课件绪论
- 宠物会展策划设计方案
- 孤残儿童护理员(四级)试题
- 医院急诊医学小讲课课件:急诊呼吸衰竭的处理
- 肠梗阻导管在临床中的使用及护理课件
- 小学英语单词汇总大全打印
- 卫生健康系统安全生产隐患全面排查
评论
0/150
提交评论