




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春汽车经济开发区第六中学2025届高一下数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.2.空间中可以确定一个平面的条件是()A.三个点 B.四个点 C.三角形 D.四边形3.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.4.的值()A.小于0 B.大于0 C.等于0 D.不小于05.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.6.直线在轴上的截距为()A. B. C. D.7.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.8.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数()A. B. C. D.9.设,若关于的不等式在区间上有解,则()A. B. C. D.10.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则____________.12.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.13.已知呈线性相关的变量,之间的关系如下表所示:由表中数据,得到线性回归方程,由此估计当为时,的值为______.14.函数的定义域为________15.如图,点为正方形边上异于点的动点,将沿翻折成,使得平面平面,则下列说法中正确的是__________.(填序号)(1)在平面内存在直线与平行;(2)在平面内存在直线与垂直(3)存在点使得直线平面(4)平面内存在直线与平面平行.(5)存在点使得直线平面16.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设,则阴影部分的面积是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值;(2)若,求的取值范围.18.在△中,所对的边分别为,,.(1)求;(2)若,求,,.19.已知扇形的半径为3,面积为9,则该扇形的弧长为___________.20.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.21.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.2、C【解析】
根据公理2即可得出答案.【详解】在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,故B错误;在C中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.【点睛】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解.3、C【解析】
利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【点睛】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】
确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.5、C【解析】
先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.6、A【解析】
取计算得到答案.【详解】直线在轴上的截距:取故答案选A【点睛】本题考查了直线的截距,属于简单题.7、D【解析】
,故选D.8、A【解析】
根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.9、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.10、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】故答案为.12、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。13、【解析】由表格得,又线性回归直线过点,则,即,令,得.点睛:本题考查线性回归方程的求法和应用;求线性回归方程是常考的基础题型,其主要考查线性回归方程一定经过样本点的中心,一定要注意这一点,如本题中利用线性回归直线过中心点求出的值.14、【解析】
根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、(2)(4)【解析】
采用逐一验证法,利用线面的位置关系判断,可得结果.【详解】(1)错,若在平面内存在直线与平行,则//平面,可知//,而与相交,故矛盾(2)对,如图作,根据题意可知平面平面所以,作,点在平面,则平面,而平面,所以,故正确(3)错,若平面,则,而所以平面,则,矛盾(4)对,如图延长交于点连接,作//平面,平面,平面,所以//平面,故存在(5)错,若平面,则又,所以平面所以,可知点在以为直径的圆上又该圆与无交点,所以不存在.故答案为:(2)(4)【点睛】本题主要考查线线,线面,面面之间的关系,数形结合在此发挥重要作用,属中档题.16、【解析】
:设两个半圆交于点,连接,可得直角扇形的面积等于以为直径的两个半圆的面积之和,平分,可得阴影部分的面积.【详解】解:设两个半圆交于点,连接,,∴直角扇形的面积等于以为直径的两个半圆的面积之和,由对称性可得:平分,故阴影部分的面积是:.故答案为:.【点睛】本题主要考查扇形的计算公式,相对不难.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)将)化简为,代入从而求得结果.(2)由,得,从而确定的范围.【详解】(1)(2)由,得解得,,即的取值范围是【点睛】本题主要考查三角函数的化简求值,不等式的求解,意在考查学生的运算能力和分析能力,难度不大.18、(1)(2)【解析】(1)由得则有=得即.(2)由推出;而,即得,则有解得19、6【解析】
直接利用扇形的面积公式,即可得到本题答案.【详解】因为扇形的半径,扇形的面积,由,得,所以该扇形的弧长为6.故答案为:6【点睛】本题主要考查扇形的面积公式的应用.20、(1)445米;(2)在弧的中点处【解析】
(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.21、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】
(1)先求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西固区建筑施工管理办法
- 西宁老年公交卡管理办法
- 西山区室内照明管理办法
- 认证产品一致性管理办法
- 证监会监管收益管理办法
- 财务ppp融资管理办法
- 贫困户用电安全管理办法
- 贵港市避难场所管理办法
- 资料员保密归口管理办法
- 越城区工程变更管理办法
- 2025年上海市中考语文试卷真题(含答案及解析)
- 物业工程管理部培训课件
- 2025至2030年中国地热能开发利用行业市场运营态势及未来趋势研判报告
- 低压抢修管理制度
- (网络收集版)2025年新课标全国一卷数学高考真题含答案
- 2025包头轻工职业技术学院工作人员招聘考试真题
- GB/T 8097-2025收获机械联合收割机测试程序和性能评价
- 2025年供应链管理与运作考试题及答案分享
- 职业技术学院公共机房台式电脑采购服务方案投标文件(技术方案)
- 主管护师《专业实践能力》考试真题及答案(2025年新版)
- 井下探矿管理制度
评论
0/150
提交评论