




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省安陆市第一中学2025届高一数学第二学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.2.函数f(x)=sinA.1 B.2 C.3 D.23.已知,则下列4个角中与角终边相同的是()A. B. C. D.4.在中,分别是角的对边,,则角为()A. B. C. D.或5.下列函数中最小值为4的是()A. B.C. D.6.已知函数,(,,)的部分图像如图所示,则、、的一个数值可以是()A. B.C. D.7.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.18.在边长为1的正方体中,,,分别是棱,,的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.1 B. C. D.9.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.6010.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与圆相交于,两点,且(其中为原点),则的值为________.12.在各项均为正数的等比数列中,,,则___________.13.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.14.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.15.已知扇形的半径为6,圆心角为,则该扇形的面积为_______.16.已知的三边分别是,且面积,则角__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.18.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.19.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?20.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题:(1)计算:,,;(2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.21.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.2、A【解析】
对sin(x+π3【详解】∵f(x)=sin∴f(x)【点睛】考查三角恒等变换、辅助角公式及余弦函数的最值.3、C【解析】
先写出与角终边相同的角的集合,再给k取值得解.【详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【点睛】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.4、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】
对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.6、A【解析】
从图像易判断,再由图像判断出函数周期,根据,将代入即可求得【详解】根据正弦函数图像的性质可得,由,,又因为图像过,代入函数表达式可得,即,,解得故选:A【点睛】本题考查三角函数图像与性质的应用,函数图像的识别,属于中档题7、B【解析】
由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.8、D【解析】
根据直线与平面没有公共点可知平面.将截面补全后,可确定点的位置,进而求得三角形面积的最小值.【详解】由题意,,分别是棱,,的中点,补全截面为,如下图所示:因为直线与平面没有公共点所以平面,即平面,平面平面此时位于底面对角线上,且当与底面中心重合时,取得最小值此时三角形的面积最小故选:D【点睛】本题考查了直线与平面平行、平面与平面平行的性质与应用,过定点截面的作法,属于难题.9、B【解析】
由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.10、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.12、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.13、【解析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.14、【解析】
在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.15、【解析】
用弧度制表示出圆心角,然后根据扇形面积公式计算出扇形的面积.【详解】圆心角为对应的弧度为,所以扇形的面积为.故答案为:【点睛】本小题主要考查角度制和弧度制互化,考查扇形面积的计算,属于基础题.16、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),或.【解析】
(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【点睛】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.18、(1)1(2)【解析】
(1)先根据向量数列积得关系式,再根据二倍角公式以及配角公式化为基本三角函数形式,最后根据正弦函数周期性得;(2)先根据x取值范围得范围,再根据正弦函数性质确定值域.【详解】(1)(2)由(1)知,,,所以函数的值域.【点睛】本题考查二倍角公式、配角公式以及正弦函数性质,考查基本分析求解能力.19、(1)①;②;(2).【解析】
利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.20、(1),,;(2).【解析】
(1)依据诱导公式以及两角和的正弦公式即可计算出;(2)观察(1)中角度的关系,合情推理出一般结论,然后利用两角和的正弦公式即可证明.【详解】(1)同理可得,,.(2)由(1)知,可以猜出:.证明如下:.【点睛】本题主要考查学生合情推理论证能力,以及诱导公式和两角和的正弦公式的应用,意在考查学生的数学抽象素养和逻辑推理能力.21、(1)12600;(2).【解析】
(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布直方图知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学二年级体质健康监测计划
- 图书编目效率提升流程
- 设备制造质量安全保证体系及措施
- 青岛国版小学科学四年级上册教学设计计划
- 供应室护理安全管理课件
- 自检能力培训课件
- 二零二五年度货物中转运输与绿色通道建设合作协议
- 二零二五年度新型货物短驳运输服务合同范本
- 软件测试沟通管理计划
- 二零二五年度火锅店员工劳动合同范本
- 帕金森护理常规知识
- 长郡中学2024-2025学年高一下学期期末考试英语试卷(含答案)
- 许昌禹州市选调农村义务教育阶段学校在编教师笔试真题2024
- 学堂在线 心理学与生活 章节测试答案
- 有机产品标准培训课件
- 班会课地球课件
- 酒店安全隐患奖惩制度
- 铁路邻近营业线施工安全管理
- 传承红色基因铸就党纪之魂建党104周年七一党课
- 医院水电安全培训
- 2025年铁路驾驶员规范知识测试题集锦
评论
0/150
提交评论