




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春第九中学2025届高一下数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则一定有()A. B. C. D.2.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.3.的值为()A. B. C. D.4.已知集合,,则A. B. C. D.5.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为()A. B. C. D.6.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.7.若cosα=13A.13 B.-13 C.8.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.9.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.10.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.64二、填空题:本大题共6小题,每小题5分,共30分。11.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.12.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.14.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.15.函数的最小值为____________.16.若、分别是方程的两个根,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.18.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值;(2)求的值.19.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a20.已知,.(1)求;(2)求.21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选2、B【解析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.3、B【解析】由诱导公式可得,故选B.4、C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。5、A【解析】
由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.6、D【解析】
先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.7、D【解析】
利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.8、B【解析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.9、D【解析】
由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.10、B【解析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.12、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.13、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.14、6【解析】
设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.15、【解析】
将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。16、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.18、(1)(2)【解析】
试题分析:(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.由条件得cosα=,cosβ=.∵α,β为锐角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β为锐角,∴0<α+2β<,∴α+2β=19、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解析】
(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.20、(1),(2)【解析】
(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【详解】(1)∵已知,,,∴则(2)【点睛】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.21、(1)3.6万;(2)2.06.【解析】
(1)由频率分布直方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国综合农业行业发展运行现状及投资潜力预测报告
- 烧结机安装方案
- 2025年中国食品礼品行业市场发展监测及投资潜力预测报告
- 推广普通话的活动方案
- 农村信息化建设方案
- 米塔吊基础施工方案
- 2025年中国水污染防治专用设备制造市场前景预测及投资规划研究报告
- 小学班主任主题班会设计方案
- 中国便携式混合记录仪行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 建立不同类型新型基础设施的发展体系实施方案
- 互联网骨干直联点监测系统项目需求
- 医院电力系统改造技术标书范本
- 中医外科试题(含答案)
- 医疗行业:互联网医院建设方案
- 新能源发电与输配行业营销策略方案
- 养老院防恐防暴应急预案
- 《高层建筑混凝土结构技术规程》(JGJ3-2010)
- 桩基刚性角计算公式
- 培训-CFB锅炉基本知识
- 奥数思维培优拓展练习-浓度问题(专项训练)-2024-2025学年六年级下册数学人教版
- 新课标高一英语阅读理解60篇
评论
0/150
提交评论