版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州地区七校2025届数学高一下期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.562.如果将直角三角形的三边都增加1个单位长度,那么新三角形()A.一定是锐角三角形 B.一定是钝角三角形C.一定是直角三角形 D.形状无法确定3.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.4.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40405.化简的结果是()A. B.C. D.6.如图,是圆的直径,点是半圆弧的两个三等分点,,,则()A. B. C. D.7.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.510.设二次函数在区间上单调递减,且,则实数的取值范围是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,,则的面积是__________.12.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.13.不等式的解集是.14.已知,则的值为_____________15.中,三边所对的角分别为,若,则角______.16.观察下列式子:你可归纳出的不等式是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.18.在平面直角坐标系中,点,点P在x轴上(1)若,求点P的坐标:(2)若的面积为10,求点P的坐标.19.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.20.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图21.已知.(1)求;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由等差数列的性质得,,其前项之和为,故选A.2、A【解析】
直角三角形满足勾股定理,,再比较,,大小关系即可.【详解】设直角三角形满足,则,又为新三角形最长边,所以所以最大角为锐角,所以三角形为锐角三角形.故选A【点睛】判断三角形形状一般可通过余弦定理判断,若有一角的余弦值小于零则为钝角三角形,等于零则为直角三角形,最大角的余弦值大于零则为锐角三角形,属于较易题目.3、A【解析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【详解】因为与的等差中项为,所以,因此有,故本题选A.【点睛】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,4、A【解析】
根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.5、D【解析】
确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.6、A【解析】
连接,证得,结合向量减法运算,求得.【详解】连接,由于是半圆弧的两个三等分点,所以,所以是等边三角形,所以,所以四边形是菱形,所以,所以.故选:A【点睛】本小题主要考查圆的几何性质,考查向量相等的概念,考查向量减法的运算,属于基础题.7、D【解析】;,与没有包含关系,故为“既不充分也不必要条件”.8、D【解析】
根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.9、D【解析】
由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.10、D【解析】
求出导函数,题意说明在上恒成立(不恒等于0),从而得,得开口方向,及函数单调性,再由函数性质可解.【详解】二次函数在区间上单调递减,则,,所以,即函数图象的开口向上,对称轴是直线.所以f(0)=f(2),则当时,有.【点睛】实际上对二次函数,当时,函数在递减,在上递增,当时,函数在递增,在上递减.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【详解】,过C作于D,则故答案为【点睛】本题考查了三角形面积计算,属于简单题.12、.【解析】
根据等积法可得∴13、【解析】
因为,且抛物线开口方向向上,所以,不等式的解集是.14、【解析】
利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【详解】由得,,,两式相除得,,则.【点睛】本题主要考查和差化积公式以及二倍角公式的应用.15、【解析】
利用余弦定理化简已知条件,求得的值,进而求得的大小.【详解】由得,由于,所以.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.16、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.18、(1);(2)或【解析】
(1)利用两直线垂直,斜率之积为-1进行求解(2)将三角形的面积问题转化成点到直线的距离公式进行求解【详解】(1)设P点坐标为,由题意,直线AB的斜率;因为,所以直线PB存在斜率且,即,解得;故点P的坐标为;(2)设P点坐标为,P到直线AB的距离为d;由已知,直线AB的方程为;的面积.得,即,解得或;所以点P的坐标为或【点睛】两直线垂直的斜率关系为;已知两点坐标时,距离公式为;三角形面积问题,常可转化为点到直线距离公式进行求解.19、(1)1;(1)此时,此时【解析】
(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上的最值.【详解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根据,可得=﹣,故.(1)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)=的图象.∵x∈[],∴,当时,即时,g(x)取得最大值为;当时,即时,g(x)取得最小值为2.【点睛】本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+)的部分图象求解析式,函数y=Asin(ωx+)的图象变换规律,正弦函数的定义域和值域,属于中档题.20、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【点睛】本题考查等可能事件、相互独立事件的概率、频率分布直方图的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中英语Unit2TravellingAroundReadingandThinking教案新人教版必修第一册
- 2024年体育专用地坪漆合作协议书
- 2024-2025学年高中化学课时作业8酸碱盐在水溶液中的电离含解析新人教版必修1
- 2023届新高考新教材化学人教版一轮学案-第四章第1讲 氯及其化合物
- 2023届新高考新教材化学鲁科版一轮专项提能特训二 学会拆分化工流程题解一通百
- 2024年大功率电源及系统项目发展计划
- 玉溪师范学院《建筑速写》2022-2023学年第一学期期末试卷
- 玉溪师范学院《管理学原理》2021-2022学年第一学期期末试卷
- 2024合同注意事项
- 2024年聚醚多元醇合作协议书
- 锡柴6110发动机图册
- 中小企业办公无线网络设计与实现毕业设计论文
- 肾上腺皮质激素类药ppt课件.ppt
- 可研勘察设计费计费标准
- 刮泥机出厂检测调试报告
- 运动处方知识点
- 某企业员工违规处理登记表(doc 2页)
- 生物地理学热带生物群
- 小学数学科教师家长会优秀PPT完整版
- 养殖恒温室设计方案
- 脑出血大病历.doc
评论
0/150
提交评论