




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市十所省重点高三冲刺模拟新高考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.2.用数学归纳法证明1+2+3+⋯+n2=n4A.k2+1C.k2+13.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于4.的展开式中的系数是()A.160 B.240 C.280 D.3205.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.6.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.7.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米8.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是9.已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为()A.2 B. C. D.310.公比为2的等比数列中存在两项,,满足,则的最小值为()A. B. C. D.11.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件12.已知向量,是单位向量,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在梯形中,∥,分别是的中点,若,则的值为___________.14.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D.若AB=BC,则实数t的值为_________.15.设,则______.16.已知全集,集合则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(I)当时,解不等式.(II)若不等式恒成立,求实数的取值范围18.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.20.(12分)下表是某公司2018年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:月份56789101112研发费用(百万元)2361021131518产品销量(万台)1122.563.53.54.5(Ⅰ)根据数据可知与之间存在线性相关关系,求出与的线性回归方程(系数精确到0.01);(Ⅱ)该公司制定了如下奖励制度:以(单位:万台)表示日销售,当时,不设奖;当时,每位员工每日奖励200元;当时,每位员工每日奖励300元;当时,每位员工每日奖励400元.现已知该公司某月份日销售(万台)服从正态分布(其中是2018年5-12月产品销售平均数的二十分之一),请你估计每位员工该月(按30天计算)获得奖励金额总数大约多少元.参考数据:,,,,参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则,.21.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.22.(10分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.2、C【解析】
首先分析题目求用数学归纳法证明1+1+3+…+n1=n4【详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故选:C.【点睛】本题主要考查数学归纳法,属于中档题./3、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.4、C【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.5、A【解析】
根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.6、D【解析】
如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.7、B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.8、D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.9、A【解析】
由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【详解】由已知,,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.10、D【解析】
根据已知条件和等比数列的通项公式,求出关系,即可求解.【详解】,当时,,当时,,当时,,当时,,当时,,当时,,最小值为.故选:D.【点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.11、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.12、C【解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.14、【解析】
由是偶函数可得时恒有,根据该恒等式即可求得,,的值,从而得到,令,可解得,,三点的横坐标,根据可列关于的方程,解出即可.【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因为,所以,即,解得,故答案为:.【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题.15、121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.16、【解析】
根据补集的定义求解即可.【详解】解:.故答案为.【点睛】本题主要考查了补集的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】试题分析:(1)根据零点分区间法,去掉绝对值解不等式;(2)根据绝对值不等式的性质得,因此将问题转化为恒成立,借此不等式即可.试题解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集为.(Ⅱ)由不等式的性质得:,要使不等式恒成立,则当时,不等式恒成立;当时,解不等式得.综上.所以实数的取值范围为.18、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、、、、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,,,,,,,,,,,,,,,,,,,,,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的计算能力.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题.19、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.20、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由题意计算x、y的平均值,进而由公式求出回归系数b和a,即可写出回归直线方程;(Ⅱ)由题意计算平均数μ,得出z~N(μ,),求出日销量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,计算奖金总数是多少.【详解】(Ⅰ)因为,,因为,所以,所以;(Ⅱ)因为,所以,故即,日销量的概率为,日销量的概率为,日销量的概率为,所以奖金总数大约为:(元).【点睛】本题考查利用最小二乘法求回归直线方程,还考查了利用正态分布计算概率,进而估计总体情况,属于中档题.21、(1)增区间为,减区间为;(2).【解析】
(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围.【详解】(1)当时,,则,当时,,则,此时,函数为减函数;当时,,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.①当时,即当时,,由,得,此时,函数为增函数;由,得,此时,函数为减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人食堂承包协议书
- 单片机原理与应用练习题与参考答案
- 人防租赁转让合同范本
- 热工基础 模拟试题
- 万年牢说课稿
- 一周学习总结
- 一防水合同范例
- 兼职定金合同范本
- 《荆棘鸟》读书心得
- 制作甲方合同范本
- 中华人民共和国传染病防治法-李硕娟 陈桂云
- 热力管网运行工施工工序标准详细流程培训
- 驾驶员心理健康与安全驾驶
- 基于强化学习的特征选择技术
- 灌入式半柔性复合抗车辙路面施工工法
- 小班第一学期教学进度表
- 材料性能学课件:材料的热学性能-2-热传导-热稳定性-
- 幼儿园优质公开课:中班数学《寻宝小勇士》课件
- 监理单位工程项目总监及监理人员名册
- 《市场营销》课程标准
- 声乐第2版(学前教育专业)PPT完整全套教学课件
评论
0/150
提交评论