SIP是类似于HTTP的基于文本的协议_第1页
SIP是类似于HTTP的基于文本的协议_第2页
SIP是类似于HTTP的基于文本的协议_第3页
SIP是类似于HTTP的基于文本的协议_第4页
SIP是类似于HTTP的基于文本的协议_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SIP是类似于HTTP的基于文本的协议。SIP可以减少应用特别是高级应用的开发时间。由于基于IP协议的SIP利用了IP网络,固定网运营商也会逐渐认识到SIP技术对于他们的深远意义。目录信令控制协议历史回顾SIP会话构成323和SIP协议的比较Java相关技术编辑本段信令控制协议本目录涉及专业领域知识,部分内容存在争议,已由中国科学院自动化研究所硕士

孙亮核实查证。

查证内容已提供参考资料,点击查看详情。SIPSIP(SessionInitiationProtocol)是一个应用层的信令控制协议。用于创建、修改和释放一个或多个参与者的会话。这些会话可以是Internet多媒体会议[1]、IP电话或多媒体分发。会话的参与者可以通过组播(multicast)、网状单播(unicast)或两者的混合体进行通信。使用SIP,服务提供商可以随意选择标准组件。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。SIP它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特点,SIP使用Internet的会话描述协议(SDP)来描述终端设备的特点。SIP自身也不提供服务质量(QoS),它与负责语音质量的资源预留协议(RSVP)互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议(LDAP)、负责身份验证的远程身份验证拨入用户服务(RADIUS)以及负责实时传输的RTP等多个协议。SIP的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着SIP可以用于众多应用和服务中,包括交互式游戏、音乐和视频点播以及语音、视频和Web会议。SIP消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。SIP如同电子邮件客户机一样重用MIME类型描述,因此与会话相关的应用程序可以自动启动。SIP重用几个现有的比较成熟的Internet服务和协议,如DNS、RTP、RSVP等。不必再引入新服务对SIP基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。对SIP的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于SIP的旧设备不会妨碍基于SIP的新服务。例如,如果旧SIP实施不支持新的SIP应用所用的方法/标头,则会将其忽略。SIP独立于传输层。因此,底层传输可以是采用ATM的IP。SIP使用用户数据报协议(UDP)以及传输控制协议(TCP),将独立于底层基础设施的用户灵活地连接起来。SIP支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。通信提供商及其合作伙伴和用户越来越渴求新一代基于IP的服务。现在有了SIP(TheSessionInitiationProtocol会话启动协议),一解燃眉之急。SIP是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,现在已成了Internet工程任务组(IETF)的规范。今天,越来越多的运营商、CLEC(竞争本地运营商)和ITSP(IP电话服务商)都在提供基于SIP的服务,如市话和长途电话技术、在线信息和即时消息、IPCentrex/HostedPBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商(ISV)正在开发新的开发工具,用来为运营商网络构建基于SIP的应用程序以及SIP软件。网络设备供应商(NEV)正在开发支持SIP信令和服务的硬件。现在,有众多IP电话、用户代理、网络代理服务器、VOIP网关、媒体服务器和应用服务器都在使用SIP。SIP从类似的权威协议--如Web超文本传输协议(HTTP)格式化协议以及简单邮件传输协议(SMTP)电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管SIP使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。SIP较为灵活,可扩展,而且是开放的。它激发了Internet以及固定和移动IP网络推出新一代服务的威力。SIP能够在多台PC和电话上完成网络消息,模拟Internet建立会话。与存在已久的国际电信联盟(ITU)SS7标准(用于呼叫建立)和ITUH.323视频协议组合标准不同,SIP独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于Web的内容。SIP大大优于现有的一些协议,如将PSTN音频信号转换为IP数据包的媒体网关控制协议(MGCP)。因为MGCP是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。例如,SIP服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用MGCP、H.323或SS7标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。而且,因为SIP的消息构建方式类似于HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如Java)来创建应用程序。对于等待了数年希望使用SS7和高级智能网络(AIN)部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用SIP[2],只需数月时间即可实现高级通信服务的部署。这种可扩展性已经在越来越多基于SIP的服务中取得重大成功。Vonage是针对用户和小企业用户的服务提供商。它使用SIP向用户提供20,000多条数字市话、长话及语音邮件线路。Deltathree为服务提供商提供Internet电话技术产品、服务和基础设施。它提供了基于SIP的PC至电话解决方案,使PC用户能够呼叫全球任何一部电话。DenwaCommunications在全球范围内批发语音服务。它使用SIP提供PC至PC及电话至PC的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于Web的个性化服务。某些权威人士预计,SIP与IP的关系将发展成为类似SMTP和HTTP与Internet的关系,但也有人说它可能标志着AIN的终结。迄今为止,3G界已经选择SIP作为下一代移动网络的会话控制机制。Microsoft已经选择SIP作为其实时通信策略并在MicrosoftXP、PocketPC和MSNMessenger中进行了部署。Microsoft同时宣布CEdotnet的下一个版本将使用基于SIP的VoIP应用接口层,并承诺向用户PC提供基于SIP的语音和视频呼叫。另外,MCI正在使用SIP向IP通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用SIP将不断地实现各种功能。SIP压缩机制SIP压缩机制主要是通过改变SIP消息的长度来降低时延。典型的SIP消息的大小由几百到几千字节,为了适合在窄带无线信道上传输,IMS对SIP进行了扩展,支持SIP消息的压缩。当无线信道一定时,一条SIP消息所含帧数k仅取决于消息大小。从时延模型可以看出,不仅影响SIP消息传输时延,还影响SIP重传的概率,对自适应的定时器来说,k还成了影响定时器初值的关键因素。[3]SIP的应用google发布世界上首个开源的Html5sip客户端HTML5SIP客户端是一款开源的,完全利用JavaScript编写的集社交(FaceBook,Twitter,Google+),在线游戏,电子商务等应用于一体。无扩展,无插件或是必备的网关,视频堆栈技术依赖于WebRTC。如同主页里的Demo视频演示,你可以轻松实现Chrome和IOS/Android移动设备之间的实时视频/音频通话。该客户端是一项在浏览器中可被用来连接任意SIP或者IMS网络进行拨打和接收音频/视频通话及即时信息技术。该协议解析器(SIP,SDP...)通过使用Ragel查找表进行了高度优化,很适合硬件(内存和运算能力)受限的嵌入式系统使用。Html5sip客户端新特性包括:支持Audio/Video通话功能;支持即时信息;Presence;呼叫保持/恢复;显示呼叫转移;支持多个账号;双音多频信号(DTMF)使用SIIPINFO历史回顾SIP出现于二十世纪九十年代中期,源于哥伦比亚大学计算机系副教授HenningSchulzrinne及其研究小组的研究。Schulzrinne教授除与人共同提出通过Internet传输实时数据的实时传输协议(RTP)外,还与人合作编写了实时流传输协议(RTSP)标准提案,用于控制音频视频内容在Web上的流传输。Schulzrinne本来打算编写多方多媒体会话控制(MMUSIC)标准。1996年,他向IETF提交了一个草案,其中包含了SIP的重要内容。1999年,Shulzrinne在提交的新标准中删除了有关媒体内容方面的无关内容。随后,IETF发布了第一个SIP规范,即RFC2543。虽然一些供应商表示了担忧,认为H.323和MGCP协议可能会大大危及他们在SIP服务方面的投资,IETF继续进行这项工作,于2001年发布了SIP规范RFC3261。RFC3261的发布标志着SIP的基础已经确立。从那时起,已发布了几个RFC增补版本,充实了安全性和身份验证等领域的内容。例如,RFC3262对临时响应的可靠性作了规定。RFC3263确立了SIP代理服务器的定位规则。RFC3264提供了提议/应答模型,RFC3265确定了具体的事件通知。早在2001年,供应商就已开始推出基于SIP的服务。今天,人们对该协议的热情不断高涨。SunMicrosystems的JavaCommunityProcess等组织正在使用通用的Java编程语言定义应用编程接口(API),以便开发商能够为服务提供商和企业构建SIP组件和应用程序。最重要的是,越来越多的竞争者正在借助前途光明的新服务进入SIP市场。SIP正在成为自HTTP和SMTP以来最为重要的协议之一。SIP的优点:类似Web的可扩展开放通信使用SIP,服务提供商可以随意选择标准组件,快速驾驭新技术。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。不过,SIP不是万能的。它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特点,SIP使用Internet的会话描述协议(SDP)来描述终端设备的特点。SIP自身也不提供服务质量(QoS),它与负责语音质量的资源保留设置协议(RSVP)互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议(LDAP)、负责身份验证的远程身份验证拨入用户服务(RADIUS)以及负责实时传输的RTP等多个协议。SIP规定了以下基本的通信要求:1.用户定位服务2.会话建立3.会话参与方管理4.特点的有限确定SIP会话构成SIP会话使用多达四个主要组件:SIP用户代理、SIP注册服务器、SIP代理服务器和SIP重定向服务器。这些系统通过传输包括了SDP协议(用于定义消息的内容和特点)的消息来完成SIP会话。下面概括性地介绍各个SIP组件及其在此过程中的作用。3.1、SIP用户代理SIP用户代理(UA)是终端用户设备,如用于创建和管理SIP会话的移动电话、多媒体手持设备、PC、PDA等。用户代理客户机发出消息。用户代理服务器对消息进行响应。3.2、SIP注册服务器SIP注册服务器是包含域中所有用户代理的位置的数据库。在SIP通信中,这些服务器会检索参对方的IP地址和其他相关信息,并将其发送到SIP代理服务器。3.3、SIP代理服务器SIP代理服务器接受SIPUA的会话请求并查询SIP注册服务器,获取收件方UA的地址信息。然后,它将会话邀请信息直接转发给收件方UA(如果它位于同一域中)或代理服务器(如果UA位于另一域中)。3.4、SIP重定向服务器SIP重定向服务器允许SIP代理服务器将SIP会话邀请信息定向到外部域。SIP重定向服务器可以与SIP注册服务器和SIP代理服务器同在一个硬件上。以下几个情景说明SIP组件之间如何进行协调以在同一域和不同域中的UA之间建立SIP会话:在同一域中建立SIP会话下图说明了在预订同一个ISP从而使用同一域的两个用户之间建立SIP会话的过程。用户A使用SIP电话。用户B有一台PC,运行支持语音和视频的软客户程序。加电后,两个用户都在ISP网络中的SIP代理服务器上注册了他们的空闲情况和IP地址。用户A发起此呼叫,告诉SIP代理服务器要联系用户B。然后,SIP代理服务器向SIP注册服务器发出请求,要求提供用户B的IP地址,并收到用户B的IP地址。SIP代理服务器转发用户A与用户B进行通信的邀请信息(使用SDP),包括用户A要使用的媒体。用户B通知SIP代理服务器可以接受用户A的邀请,且已做好接收消息的准备。SIP代理服务器将此消息传达给用户A,从而建立SIP会话。然后,用户创建一个点到点RTP连接,实现用户间的交互通信。\o"查看图片"

title1.呼叫用户B2.查询B在哪里3.响应B的SIP地址4.呼叫5.响应6.响应7.多媒体通道已建立在不同的域中建立SIP会话本情景与第一种情景的不同之处如下。用户A邀请正在使用多媒体手持设备的用户B进行SIP会话时,域A中的SIP代理服务器辨别出用户B不在同一域中。然后,SIP代理服务器在SIP重定向服务器上查询用户B的IP地址。SIP重定向服务器既可在域A中,也可在域B中,也可既在域A中又在域B中。SIP重定向服务器将用户B的联系信息反馈给SIP代理服务器,该服务器再将SIP会话邀请信息转发给域B中的SIP代理服务器。域B中的SIP代理服务器将用户A的邀请信息发送给用户B。用户B再沿邀请信息经由的同一路径转发接受邀请的信息。\o"查看图片"

title1.呼叫用户B2.询问B中的用户3.响应4.呼叫域B的SIP代理5.查询B在哪里6.用户B的地址7.代理呼叫8.响应9.响应10.响应11.多媒体通道已建立无缝、灵活、可扩展:展望SIP未来SIP能够连接使用任何IP网络(有线LAN和WAN、公共Internet骨干网、移动2.5G、3G和Wi-Fi)和任何IP设备(电话、PC、PDA、移动手持设备)的用户,从而出现了众多利润丰厚的新商机,改进了企业和用户的通信方式。基于SIP的应用(如VOIP、多媒体会议、push-to-talk(按键通话)、定位服务、在线信息和IM)即使单独使用,也会为服务提供商、ISV、网络设备供应商和开发商提供许多新的商机。不过,SIP的根本价值在于它能够将这些功能组合起来,形成各种更大规模的无缝通信服务。使用SIP,服务提供商及其合作伙伴可以定制和提供基于SIP的组合服务,使用户可以在单个通信会话中使用会议、Web控制、在线信息、IM等服务。实际上,服务提供商可以创建一个满足多个最终用户需求的灵活应用程序组合,而不是安装和支持依赖于终端设备有限特定功能或类型的单一分散的应用程序。通过在单一、开放的标准SIP应用架构下合并基于IP的通信服务,服务提供商可以大大降低为用户设计和部署基于IP的新的创新性托管服务的成本。它是SIP可扩展性促进本行业和市场发展的强大动力,是我们所有人的希望所在。H.323和SIP协议的比较简介H.323和SIP分别是通信领域与因特网两大阵营推出的协议。H.323企图把IP电话当作是众所周知的传统电话,只是传输方式发生了改变,由电路交换变成了分组交换。而SIP协议侧重于将IP电话作为因特网上的一个应用,较其它应用(如FTP,E-mail等)增加了信令和QoS的要求,它们支持的业务基本相同,也都利用RTP作为媒体传输的协议。但H.323是一个相对复杂的协议。H.323采用基于ASN.1和压缩编码规则的二进制方法表示其消息。ASN.1通常需要特殊的代码生成器来进行词法和语法分析。而SIP的基于文本的协议,类似于HTTP。基于文本的编码意味着头域的含义是一目了然的,如From、To、Subject等域名。这种分布式、几乎不需要复杂的文档说明的标准规范风格,其优越性已在过去的实践中得到了充分的证明(现在广为流行的邮件协议SMTP就是这样的一个例子)。SIP的消息体部份采用SDP进行描述,SDP中的每一项格式为=,也比较简单。在支持会议电话方面,H.323由于由多点控制单元(MCU)集中执行会议控制功能,所有参加会议终端都向MCU发送控制消息,MCU可能会成为颈,特别是对于具有附加特性的大型会议;并且H.323不支持信令的组播功能,其单功能限制了可扩展性,降低了可靠性。而SIP设计上就为分布式的呼叫模型,具有分布式的组播功能,其组播功能不仅便于会议控制,而且简化了用户定位、群组邀请等,并且能节约带宽。但是H.323的集中控制便于计费,对带宽的管理也比较简单、有效。H.323中定义了专门的协议用于补充业务,如H.450.1、H.450.2和H.450.3等。SIP并未专门定义的协议用于此目的,但它很方便地支持补充业务或智能业务。只要充分利用SIP已定义的头域(如Contact头域),并对SIP进行简单的扩展(如增加几个域),就可以实现这些业务。例如对于呼叫转移,只要在BYE请求消息中添加Contact头域,加入意欲转至的第三方地址就可以实现此业务。对于通过扩展头域较难实现的一些智能业务,可在体系结构中增加业务代理,提供一些补充服务或与智能网设备的接口。在H.323中,呼叫建立过程涉及到第三条信令信致到:RAS信令信道、呼叫信令信道和H.245控制信道。通过这三条信道的协调才使得H.323的呼叫得以进行,呼叫建立时间很长。在SIP中,会话请求过程和媒体协商过程等一起进行。尽管H.323v2已对呼叫建立过程作了改进,但较之SIP只需要1.5个回路时延来建立呼叫,仍是无法相比。H.323的呼叫信令通道和H.245控制信道需要可靠的传输协议。而SIP独立于低层协议,一般使用UDP等无法连接的协议,用自己信用层的可靠性机制来保证消息的可靠传输。总之,H.323沿用的是传统的实现电话信令模式,比较成熟,已经出现了不少H.323产品。H.323符合通信领域传统的设计思想,进行集中、层次控制,采用H.323协议便于与传统的电话网相连。SIP协议借鉴了其它因特网的标准和协议的设计思想,在风格上遵循因特网一贯坚持的简练、开放、兼容和可扩展等原则,比较简单。以下针对它们的应用目标、标准结构、系统组成以及系统实现的难易程度等几个方面进行简单分析。4.1、标准的应用目标h.323标准是itu-t组织1996年在h.320/h.324的基础上建立起来的,其应用目标是,在基于ip的网络环境中,实现可靠的面向音视频和数据的实时应用。目前经过多年的技术发展和标准的不断完善,h.323已经成为被广大的itu成员以及客户所接受的一个成熟标准族。sip标准是itef组织在1999年提出的,其应用目标是在基于internet环境,实现数据、音视频实时通讯,特别是通过internet将视频通讯这种应用大众化,引入到千家万户。由于sip协议相对于h.323而言,相对简单、自由,厂商可以使用相对小的成本就可以构造满足应用的系统。例如仅仅使用微软基于sip协议的msn,和rtc就可以构造一个简单的,基于internet应用环境的视频通讯环境。这样网络运营商就可以在尽量少的成本基础上,利用现有的网络资源开展视音频通讯业务的扩展工作。4.2、标准的体系结构h.323是一个单一标准,而不是一个关于在ip环境中实时多媒体应用的完整标准族,对于呼叫的建立、管理以及所传输媒体格式等各个方面都有完善而严格的规定。一个遵守h.323标准建立的多媒体系统,可以保证实现客户稳定完善的多媒体通讯应用。sip标准严格意义上讲是一个实现实时多媒体应用的信令标准,由于它采用了基于文本的编码方式,使得它在应用上,特别是点到点的应用环境中,具有极大的灵活性、扩充性以及跨平台使用的兼容性,这一点使得运营商可以十分方便的利用现有的网络环境实现大规模的推广应用。但是sip协议自身不支持多点的会议功能以及管理和控制功能,而是要依赖于别的协议实现,影响了系统的完备性,特别是对于需要多点通讯的要求,应用单纯的sip系统难以实现。针对这些不足,以radvison公司为首的itu-tsg16小组提出了sip的运用规范,并实现了sip和h.323之间的互通互联,并成功的解决了sip在多点环境下的应用难题。4.3、系统的组成结构首先,在系统主要组成成员的功能性方面进行类比,sip的ua等价于一个h.323的终端,实现呼叫的发起和接收,并完成所传输媒体的编解码应用;sip代理服务器、重定向服务器以及注册服务器的功能则等价于h.323的gatekeeper,实现了终端的注册、呼叫地址的解析以及路由。其次,虽然在呼叫信令和控制的具体实现上不同,但一个基于sip的呼叫流程与h.323的q931相类似,sip所采用的会话描述协议(sdp)则类似于h.323中的呼叫控制协议h.245。4.4、系统实现的难易性h.323标准的信令信息是采用符合asn.1per的二进制编码,并且在连接实现全过程都要严格标准的定义,系统的自由度小,如要实现大规模的应用,需要对整个网络的各个环节进行规划。sip标准的信令信息是基于文本的,采用符合iso10646的utf-8编码,并且全系统的构造结构相对灵活,终端和服务器的实现也相对容易成本也较低,从网络运营商的角度考虑,构造一个大规模视频通讯网络,采用sip系统的成本要廉价许多,而且也更具有可实现性。4.5、总结通过对sip和h.323协议之间进行比较,我们不难看出,h.323和sip之间不是对立的关系,而是在不同应用环境中的相互补充。sip作为以internet应用为背景的通讯标准,是将视频通讯大众化,引入千家万户的一个有效并具有现实可行性的手段。而h.323系统和sip系统有机结合,又确保了用户可以在构造相对廉价灵活的sip视频系统的基础上,实现多方会议等多样化的功能,并可靠的实现sip系统与h.323系统之间的互通,在最大程度上满足用户对未来实时多媒体通信的要求。编辑本段Java相关技术5.1、开源项目开源软件无线电技术对通信的各个行行业业影响颇深,SIP也不例外。GNURadio是免费的软件开发工具套件。它提供信号运行和处理模块,用它可以在易制作的低成本的射频(RF)硬件和通用微处理器上实现软件定义无线电。这套套件广泛用于业余爱好者,学术机构和商业机构用来研究和构建无线通信系统。GNURadio的应用主要是用Python编程语言来编写的。但是其核心信号处理模块是C++在带浮点运算的微处理器上构建的。因此,开发者能够简单快速的构建一个实时、高容量的无线通信系统。尽管其主要功用不是仿真器,GNURadio在没有射频RF硬件部件的境况下支持对预先存储和(信号发生器)生成的数据进行信号处理的算法的研究。5.2、Java在这里,我只讨论与java相关的SIP技术,其实实现SIP的技术有多种,比如CGI.java为SIP提供了非常好的支持,JCP(JavaCommunityProcess)组织推动开发的一套基于Java技术的API:JAINAPI(JavaAPIforIntegratedNetworks),它包含JAINSIP(JAINSIPLite)和SIPServlet(JSR116),SIPforJ2ME,三个规范.以下为与java相关的SIP技术:JAINSIPAPI(JSR32)SIPServletAPI(JSR116)JAINSIPLite(JSR125)SIPAPIforJ2ME(JSR180)JAINSIMPLEPresence(JSR164)JAINSIMPLEInstantMessaging(JSR165)JAINSDP(JSR141)SIP描述协议JavaMediaFrameworkforRTP(J2SE可选包,并非JAIN的)SIPforJ2ME:(JSR180)JAINSIPAPI主要提供了J2SE平台的SIP协议栈的实现,主要面向桌面的J2SE应用;SIPServletAPI主要为面向服务端的SIP程序提供了一个API规范,目前实现了该规范的应用服务器有BEAWeblogicSIPServer和Micromethod,还有JipletContainer,至于如何开发sipservlet,可参见参考资料.SIPforJ2ME主要为面向手机的CLDC设备的J2ME客户端.它们之间的差别在参考资料[6]中讲解得很详细.其它Java相关技术:jiplet:一个支持sipservlet的应用服务器nist-sipSIPLibrariesandToolsJAINServiceLogicExecutionEnvironment(SLEE)参考资料1.\o"向上跳转"

多媒体会议

.百度百科[引用日期2012-12-26].2.\o"向上跳转"

波克申科(作者),梅耶尔(GeorgMayer)(作者),望育梅(译者),周胜(译者)

.《IMS:IP多媒体子系统概念与服务(原书第3版)》:机械工业出版社,2011年.3.\o"向上跳转"

IMS中SIP会话建立时延的研究IMS,英文缩写。IMS(IPMultimediaSubsystem)是IP多媒体系统,是一种全新的多媒体业务形式,它能够满足现在的终端客户更新颖、更多样化多媒体业务的需求。目录[隐藏

]1概述2发展历程3应用4安全问题分析5多种含义6参考资料\o"\"点击查看原图\"IMSIMS(IPMultimediaSubsystem)是IP多媒体系统,是一种全新的\o"多媒体"多媒体业务形式,它能够满足现在的终端客户更新颖、更多样化多媒体业务的需求。目前,IMS被认为是\o"下一代网络"下一代网络的核心技术,也是解决移动与固网融合,引入\o"语音"语音、数据、\o"视频"视频三重融合等差异化业务的重要方式。但是,目前全球IMS网络多数处于初级阶段,应用方式也处于业界探讨当中。1.IMS-概述IMS最初是由\o"3GPP"3GPP(第三代合作伙伴计划)组织制定的一项\o"3G"3G网络核心技术标准。现在这项标准已为\o"ITU-T"ITU-T(国际电联标准化部门)和\o"ETSI"ETSI(欧洲电信标准化委员会)认可,被纳入下一代网络(\o"NGN"NGN)的核心框架之中。它被认为是未来实现固定网和移动网融合(\o"FMC"FMC)的重要技术基础。IMS的体系结构分为业务层、控制层和链接层。业务层由应用(和内容)服务器组成,负责为用户提供增值服务。控制层由网络控制服务器组成,负责管理呼叫或会话的设定、修改和释放。在这些服务器中最重要的是具有呼叫会话控制功能(\o"CSCF"CSCF)的\o"SIP服务器"SIP服务器。在控制层中,还配置了计费、运营维护等多功能。边界\o"网关"网关负责与其他\o"运营商"运营商网络或其他类型网络之间的互通。连接层由用于\o"骨干网"骨干网和接入网的\o"路由器"路由器及\o"交换机"交换机组成。IMS符合下一代网络把呼叫控制和传输分离的要求;它基于SIP,与接入无关,符合网络向“多种终端——多种接入——统一控制核心网——多种应用的网络体系结构”演变的发展方向,使得多种业务能同时进行交互,以形成一个更加灵活的通信平台。不仅可以实现人到内容的多媒体通信,还能实现人到人的多媒体通信。IMS将最终融合固定网、移动网、企业网、无线网等各种网络,简化网络结构,支持更丰富的定制化业务。\o"\"点击查看原图\"IMS2.IMS-发展历程国际第三代移动通信组织3GPP一直在进行它称为IP多媒体子系统IMS的标准化研究。在3GPP的文件\o"R5"R5中,IMS是\o"UMTS"UMTS核心网络中提供端到端多媒体业务和集群多媒体业务的中心。在3GPP的\o"R6"R6中,IMS已经被定义为支持所有IP接入网的多媒体业务核心网,可以支持任何一种移动的或固定的、有线的或无线的\o"IP-CAN"IP-CAN(IPConnectivityAccessNetworks),包括\o"W-CDMA"W-CDMA,\o"CDMA2000"CDMA2000,\o"Ethernet"Ethernet,\o"xDSL"xDSL以及\o"WirelessLAN"WirelessLAN等等。IMS由控制\o"多媒体"多媒体会话的网络实体组成,在UMTS中IMS是提供IP多媒体服务的核心。IP多媒体服务使用\o"GPRS"GPRS网络来进行传输。网络提供者同时为IP多媒体服务提供传输实体和网络控制实体。网络结构同时允许为第三方提供附加的IP多媒体服务。在UMTS版本5或更高的版本中,新增加的主要内容就是添加了两个全新的具有重要能力的IMS。第一,增加类似呼叫状态控制功能(CSCF)的新的网络实体来提供基本的IP多媒体服务,例如在两个用户间的多媒体会话的发起。第二,相互兼容已经发展到可以提炼一些网络实体能力的阶段,例如开放业务接入(\o"OSA"OSA)服务能力。利用基本的IP多媒体服务和网络提供的能力,OSA服务能力的功能被期望能够激励第三方新的IP多媒体服务的产生。一个IMS包括一个或多个CSCF、媒体网关控制功能(\o"MGCF"MGCF)、IMS媒体网关、多媒体资源功能处理器(\o"MRFC"MRFC)、订阅位置功能、中断网关控制功能(\o"BGCF"BGCF)和应用服务器。我们下面解释IMS如何实现其主要功能和如何为UMTS增加支持多媒体业务。\o"IPv6"IPv6--IMS的信令和会话业务都是通过IP承载的,但是,并不是任何版本的IP都是可以使用的,IMS要求只有IPv6才能在IMS域中使用。虽然这将使UMTS这一全球第一商业系统广泛地发展IPv6,但是这仍将是一个大胆的要求,因为:IMS中的IP寻址与分组域骨干网中使用的(例如\o"IPv4"IPv4)和电路域中使用的是不同的,所以IPv6和IPv4互通的问题需要解决。用于移动台接入IP多媒体服务的IP寻址范围必须在IMS寻址域内,这个\o"寻址"寻址域是在建立好IP连接时激活的\o"PDP"PDP上下文中安排好的。IP地址可以从服务域而不是归属域的\o"GGSN"GGSN中获得,从路由的效率来考虑,这是一个优点。呼叫/会话控制--CSCF使用SIP在呼叫控制中发挥了核心作用。CSCF可以比作电路域语音通话中移动交换中心的信令部分和控制部分。除了语音通信之外,它还能支持多媒体会话。SIP是在移动台和CSCF之间、CSCF之间、CSCF和MGCF之间、CSCF和应用服务器之间有关\o"信令"信令方面的协议。CSCF起到了很多作用:作为代理CSCF(P-CSCF),这是移动台和IMS连接最初的一点;作为提供服务的CSCF(S-CSCF),可以用于会话控制;作为询问CSCF(I-CSCF),这是网络中各个移动台的有关IMS信令的一个主要的连接点。\o"PSTN"PSTN互通--当会话的一端为IMS用户,而会话的另一端是公共电话交换网用户时,网络需要四个新的功能实体-IMS媒体网关、MGCF、信令网关和\o"BGCF"BGCF。BGCF具有支持PSTN与PS域之间的呼叫的功能。媒体网关用来完成在两端用不同格式编码的媒体信号的翻译。MGCF控制IMS媒体网关,提供在基于SIP的和基于\o"ISUP"ISUP信令之间应用级的信令翻译,并且与S-CSCF进行通信。传输级的在基于IP的和基于SS7的信令翻译由SGW完成。BGCF识别网络和网络中的MGCF,并确定进入PSTN的位置。处理用户签订的信息和用户状态的信息--归属用户服务器(\o"HSS"HSS)是主要的数据库,它存储用户签订的业务信息和本地信息。它可以被考虑为一个增强型GSM网络中的归属位置寄存器。因为在网络中有几个HSS存在,在注册和会话建立过程中,为了找到有目标用户信息的HSS,用户位置功能被CSCF询问。用户位置功能不需要在单一的HSS环境下实现,因为CSCF知道哪一个HSS会被使用。可以使用各种不同的应用服务器,包括基于SIP的应用服务器和OSA应用服务器,这些应用服务器可以实现各种服务,例如语音提示服务和预付费服务。支持多种服务的应用服务器还可以促进新的业务的产生。在这两种情况下,SIP为S-CSCF的信令服务,然而,在一个OSA应用服务器的例子中,一个OSA容量服务器应该插入在OSA应用服务器和S-CSCF之间。多方会议-媒体资源功能处理器(\o"MRFP)"MRFP)和媒体资源功能控制器(\o"MRFC"MRFC)支持多方多媒体会议,并能体现媒体资源(例如,语音提示功能)的实际能力。MRFP处理和混合实际的媒体流,MRFC控制MRFP的媒体流资源。其他问题-在设计和标准化UMTS的过程中,产生了很多复杂的问题。例如,在2000年底才确定下来一个用户的服务控制由它的归属网络来执行,并且,当用户漫游到国外网络时,这个功能仍然适用,但是,因为存在仅仅由归属域控制产生的潜在的劣势,例如,归属域的过载和处理分组上的延迟,所以由访问域进行控制的问题也已经开始考虑了。而且,关于支持由访问域和归属域通过IMS共同控制的问题,3GPP已经讨论了一段时间了。然而支持两种模式必定会使网络结构更加复杂。因此,3GPP最终决定使用归属域来控制,但是,以后可能会重新进行这一问题的讨论。\o"\"点击查看原图\"IMS3.IMS-应用3.1即时通(\o"Pushtotalk"Pushtotalk)又叫做一键通业务,该服务使得手机终端用户能够在分组交换网络上,通过只按一个按键就进行一对一或群体即时通话。该服务采取“

\o"半双工"半双工

”模式,也就是说同一时间只有一人能够讲话,从而更便于群体交流,该服务可以使用户能够在通话群中灵活地选定或者变换通话对象。从而用户可以轻易地与通话群体中所有人或选择部分人进行Pushtotalk通话。它是一种全数字传输的

\o"VoIP"VoIP

技术,其完全基于

\o"SIP"SIP协议和IMS的设计,很好的保证了互通性、可量测性和向未来

\o"3G"3G

的平滑过渡。3.2\o"IP电话"IP电话业务随着宽带IP接入的普及,IP终端电话成为新的热点,例如现在一些运营商正在推广的IP超市(类似于IP公用电话亭),基于

\o"H.323"H.323

的IP终端电话未能普及除了以前缺乏IP宽带接入这个原因外,还因为H.323的用户认证一直是一个问题,另外H.323终端价格昂贵也是一个原因。现在采用SIP基本上克服了这些问题,SIP软件被免费集成在

\o"MicrosoftWinXP"MicrosoftWinXP

操作系统中,因为SIP如此简单,甚至有运行在

\o"Linux"Linux

\o"PocketPc"PocketPc

,\o"Symbian"Symbian

上的SIPClient软件,使得手持终端上的SIP应用也成为可能,而且SIP还支持完善的用户认证机制。所以基于SIP的IMS完全可以被用来作为IP终端电话系统。3.3串行振铃和并行振铃业务因为一个SIP用户可以同时在很多终端上注册,比如他可能有几个固定办公电话,还有\o"无绳电话"无绳电话,\o"移动电话"移动电话,\o"便携PC"便携PC等,每种终端可以实现不同的功能,比如便携PC支持\o"视频"视频而固定SIP电话可能连P&M都不支持,用户不需要总是带着所有终端,在各种情况下他只带着其中一些,比如开会时他可能只带着便携PC。\o"串行振铃"串行振铃业务是当另外一个用户呼叫该用户时,系统会根据该用户设定的次序和等待时间依次振铃该用户的各种终端,直到该用户接通为止。而并行振铃业务则是系统同时振铃该用户的所有注册终端,直到该用户接通为止。3.4会晤转移业务会晤转移业务包括无条件转移,无应答转移和遇忙转移,该用户可以定制转移的统一资源标识(\o"URI"URI),当条件符合时,呼叫被转移到设定的目标。这种业务和传统电话呼叫转移业务功能相同,只是增加了新的媒体类型。3.5主叫标识显示业务和传统电话的主叫号码显示意义相同,只不过显示在被叫终端上的不只是主叫的\o"SIPURI"SIPURI,而可能是任何媒体,比如一张主叫的照片、一段声音或者视频片断。根据系统的提示,主叫可以事先将要传送的标识上传到系统中存储,当主叫呼叫被叫时,SIP消息报文将主叫标识的统一资源地址(URL)传到被叫,被叫终端自动打开该URL,从而看到主叫的标识。\o"\"点击查看原图\"IMS4.IMS-安全问题分析IP多媒体子系统(IMS)是3GPP在R5规范中提出的,旨在建立一个与接入无关、基于开放的SIP/IP协议及支持多种多媒体业务类型的平台来提供丰富的业务。它将\o"蜂窝移动通信网络技术"蜂窝移动通信网络技术、传统固定网络技术和\o"互联网"互联网技术有机结合起来,为未来的基于全IP网络多媒体应用提供了一个通用的业务智能平台,也为未来网络发展过程中的网络融合提供了技术基础。IMS的诸多特点使得其一经提出就成为业界的研究热点,是业界普遍认同的解决未来网络融合的理想方案和发展方向,但对于IMS将来如何提供统一的业务平台实现全业务运营,IMS的标准化及安全等问题仍需要进一步的研究和探讨。4.1IMS存在的安全问题分析传统的电信网络采用独立的信令网来完成呼叫的建立、路由和控制等过程,信令网的安全能够保证网络的安全。而且传输采用时分复用(\o"TDM"TDM)的专线,用户之间采用面向连接的通道进行通信,避免了来自其他终端用户的各种\o"窃听"窃听和攻击。而IMS网络与互联网相连接,基于IP协议和开放的网络架构可以将语音、数据、多媒体等多种不同业务,通过采用多种不同的接入方式来共享业务平台,增加了网络的灵活性和终端之间的互通性,不同的运营商可以有效快速地开展和提供各种业务。由于IMS是建立在IP基础上,使得IMS的安全性要求比传统运营商在独立网络上运营要高的多,不管是由移动接入还是固定接入,IMS的安全问题都不容忽视。IMS的安全威胁主要来自于几个方面:未经授权地访问敏感数据以破坏机密性;未经授权地篡改敏感数据以破坏完整性;干扰或滥用网络业务导致拒绝服务或降低系统可用性;用户或网络否认已完成的操作;未经授权地接入业务等。主要涉及到IMS的接入安全(\o"3GPPTS33.203"3GPPTS33.203),包括用户和\o"网络认证"网络认证及保护IMS终端和网络间的业务;以及IMS的网络安全(\o"3GPPTS33.210"3GPPTS33.210),处理属于同一运营商或不同运营商网络节点之间的业务保护。除此之外,还对用户终端设备和通用集成电路卡/IP多媒体业务身份识别模块(\o"UICC/ISIM"UICC/ISIM)安全构成威胁。4.2IMS安全体系IMS系统安全的主要应对措施是IP安全协议(\o"IPSec"IPSec),通过IPSec提供了接入安全保护,使用IPSec来完成网络域内部的实体和网络域之间的安全保护。3GPPIMS实质上是叠加在原有核心网分组域上的网络,对PS域没有太大的依赖性,在PS域中,业务的提供需要移动设备和移动网络之间建立一个安全联盟(SA)后才能完成。对于IMS系统,多媒体用户也需要与IMS网络之间先建立一个独立的SA之后才能接入多媒体业务。3GPP终端的核心是通用集成电路卡(\o"UICC"UICC),它包含多个逻辑应用,主要有用户识别模块(SIM)、UMTS用户业务识别模块(USIM)和ISIM。ISIM中包含了IMS系统用户终端在系统中进行操作的一系列参数(如身份识别、用户授权和终端设置数据等),而且存储了共享密钥和相应的\o"AKA"AKA(AuthenticationandKeyAgreement)算法。其中,保存在UICC上的用户侧的IMS认证密钥和认证功能可以独立于PS域的认证密钥和认证功能,也可和PS使用相同的认证密钥和认证功能。IMS的安全体系如图1所示。\o"\"点击查看原图\"图1IMS安全体系结构图

图1中显示了5个不同的安全联盟用以满足IMS系统中不同的需求,分别用①、②、③、④、⑤来加以标识。①提供终端用户和IMS网络之间的相互认证。②在UE和P-CSCF之间提供一个安全链接(Link)和一个安全联盟(SA),用以保护Gm接口,同时提供数据源认证。③在网络域内为Cx接口提供安全。④为不同网络之间的SIP节点提供安全,并且这个安全联盟只适用于代理呼叫会话控制功能(P-CSCF)位于拜访网络(VN)时。⑤为同一网络内部的SIP节点提供安全,并且这个安全联盟同样适用于P-CSCF位于归属网络(HN)时。除上述接口之外,IMS中还存在其他的接口,在上图中未完整标识出来,这些接口位于安全域内或是位于不同的安全域之间。这些接口(除了Gm接口之外)的保护都受IMS网络安全保护。SIP信令的保密性和完整性是以逐跳的方式提供的,它包括一个复杂的安全体系,要求每个代理对消息进行解密。SIP现在使用两种安全协议:传输层安全协议(TLS)和IPSec,TLS可以实现认证、完整性和机密性,用TLS来保证安全的请求必须使用可靠的传输层协议,如传输控制协议(TCP)或流控制传输协议(SCTP);IPSec通过在IP层对SIP消息提供安全来实现认证、完整性和机密性,它同时支持TCP和用户数据报协议(UDP)。在IMS核心网中,可通过NDS/IP来完成对网络中SIP信令的保护;而第一跳,即UE和P-CSCF间的信令保护则需要附加的测量,在3GPPTS33.203中有具体描述。4.3IMS的接入安全IMS用户终端(UE)接入到IMS核心网需经一系列认证和密钥协商过程,具体而言,UE用户签约信息存储在归属网络的HSS中,且对外部实体保密。当用户发起注册请求时,查询呼叫会话控制功能(I-CSCF)将为请求用户分配一个服务呼叫会话控制功能(S-CSCF),用户的签约信息将通过Cx接口从HSS下载到S-CSCF中。当用户发起接入IMS请求时,该S-CSCF将通过对请求内容与用户签约信息进行比较,以决定用户是否被允许继续请求。在IMS接入安全中,IPSec封装安全净荷(ESP)将在IP层为UE和P-CSCF间所有SIP信令提供机密性保护,对于呼叫会话控制功能(CSCF)之间和CSCF和HSS之间的加密可以通过安全网关(SEG)来实现。同时,IMS还采用IPSecESP为UE和P-CSCF间所有SIP信令提供完整性保护,保护IP层的所有SIP信令,以传输模式提供完整性保护机制。在完成注册鉴权之后,UE和P-CSCF之间同时建立两对单向的SA,这些SA由TCP和UDP共享。其中一对用于UE端口为客户端、P-CSCF端口作为服务器端的业务流,另一对用于UE端口为服务器、P-CSCF端口作为客户端的业务流。用两对SA可以允许终端和P-CSCF使用UDP在另一个端口上接收某个请求的响应,而不是使用发送请求的那个端口。同时,终端和P-CSCF之间使用TCP连接,在收到请求的同一个TCP连接上发送响应;而且通过建立SA实现在IMSAKA提供的共享密钥以及指明在保护方法的一系列参数上达成一致。SA的管理涉及到两个数据库,即内部和外部数据库(SPD和SAD)。SPD包含所有入站和出站业务流在主机或安全网关上进行分类的策略。SAD是所有激活SA与相关参数的容器。SPD使用一系列选择器将业务流映射到特定的SA,这些选择器包括IP层和上层(如TCP和UDP)协议的字段值。与此同时,为了保护SIP代理的身份和网络运营商的网络运作内部细节,可通过选择网络隐藏机制来隐藏其网络内部拓扑,归属网络中的所有I-CSCF将共享一个加密和解密密钥。在通用移动通信系统(UMTS)中相互认证机制称为UMTSAKA,在AKA过程中采用双向鉴权以防止未经授权的“非法”用户接入网络,以及未经授权的“非法”网络为用户提供服务。AKA协议是一种挑战响应协议,包含用户鉴权五元参数组的挑战由AUC在归属层发起而发送到服务网络。UMTS系统中AKA协议,其相同的概念和原理被IMS系统重用,我们称之为IMSAKA。AKA实现了ISIM和AUC之间的相互认证,并建设了一对加密和完整性密钥。用来认证用户的身份是私有的身份(IMPI),HSS和ISIM共享一个与IMPI相关联的长期密钥。当网络发起一个包含RAND和AUTN的认证请求时,ISIM对AUTN进行验证,从而对网络本身的真实性进行验证。每个终端也为每一轮认证过程维护一个序列号,如果ISIM检测到超出了序列号码范围之外的认证请求,那么它就放弃该认证并向网络返回一个同步失败消息,其中包含了正确的序列号码。为了响应网络的认证请求,ISIM将密钥应用于随机挑战(RAND),从而产生一个认证响应(RES)。网络对RES进行验证以认证ISIM。此时,UE和网络已经成功地完成了相互认证,并且生成了一对会话密钥:加密密钥(CK)和完整性密钥(IK)用以两个实体之间通信的安全保护。4.4IMS的网络安全在第二代移动通信系统中,由于在核心网中缺乏标准的安全解决方案,使得安全问题尤为突出。虽然在无线接入过程中,移动用户终端和基站之间通常可由加密来保护,但是在核心网时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论