版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市宁乡一中2025届高一下数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,则()A. B. C. D.2.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.123.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为4.已知函数,若方程有5个解,则的取值范围是()A. B. C. D.5.已知向量,,如果向量与平行,则实数的值为()A. B. C. D.6.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.47.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形8.已知某地、、三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层抽样的方法抽取的户数进行调査,则样本容量和抽取村贫困户的户数分别是()A., B.,C., D.,9.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②10.已知,则的值等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,若数列为单调递增数列,则实数的取值范围是______.12.已知等差数列中,,则_______13.已知等差数列的公差为,且,其前项和为,若满足,,成等比数列,且,则______,______.14.如图,在中,,,,则________.15.___________.16.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从两个班中各随机抽取10名学生,他们的数学成绩如下,通过作茎叶图,分析哪个班学生的数学学习情况更好一些.甲班76748296667678725268乙班8684627678928274888518.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.19.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;20.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.21.已知直线:在轴上的截距为,在轴上的截距为.(1)求实数,的值;(2)求点到直线的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【详解】根据等比数列性质:成等比数列,设则,;故选:C【点睛】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.2、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。3、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.4、D【解析】
利用因式分解法,求出方程的解,结合函数的性质,根据题意可以求出的取值范围.【详解】,,或,由题意可知:,由题可知:当时,有2个解且有2个解且,当时,,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,,所以,综上所述;的取值范围是,故本题选D.【点睛】本题考查了已知方程解的情况求参数取值问题,正确分析函数的性质,是解题的关键.5、B【解析】
根据坐标运算求出和,利用平行关系得到方程,解方程求得结果.【详解】由题意得:,,解得:本题正确选项:【点睛】本题考查向量平行的坐标表示问题,属于基础题.6、D【解析】
由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.7、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.8、B【解析】
将饼图中的、、三个村的人口户数全部相加,再将所得结果乘以得出样本容量,在村人口户数乘以,再乘以可得出村贫困户的抽取的户数.【详解】由图得样本容量为,抽取贫困户的户数为户,则抽取村贫困户的户数为户.故选B.【点睛】本题考查样本容量的求法,考查分层抽样、扇形统计图和条形统计图计算数据,考查运算求解能力,属于基础题.9、A【解析】
根据面面垂直,面面平行的判定定理判断即可得出答案。【详解】①若,则在平面内必有一条直线使,又即,则,故正确。②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题。10、B【解析】.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意得到,推出,恒成立,求出的最大值,即可得出结果.【详解】因为数列的通项公式为,且数列为单调递增数列,所以,即,所以,恒成立,因此即可,又随的增大而减小,所以,因此实数的取值范围是.故答案为:【点睛】本题主要考查由数列的单调性求参数,熟记递增数列的特点即可,属于常考题型.12、【解析】
设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。13、2【解析】
由,可求出,再由,,成等比数列,可建立关系式,求出,进而求出即可.【详解】由,可知,即,又,,成等比数列,所以,则,即,解得或,因为,所以,,所以.故答案为:2;.【点睛】本题考查等比数列的性质,考查等差数列前项和的求法,考查学生的计算求解能力,属于基础题.14、【解析】
先将转化为和为基底的两组向量,然后通过数量积即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,数量积运算,意在考查学生的分析能力和计算能力.15、【解析】
先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.16、【解析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【点睛】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、茎叶图见解析,乙班【解析】
根据表中数据作出茎叶图,再依据茎叶图进行分析.【详解】根据表中数据,作出茎叶图如下:从这个茎叶图中可以看出,甲班成绩集中在70分左右,而乙班成绩集中在80左右,故乙班的数学成绩更好一些.【点睛】本题考查画茎叶图,也考查茎叶图的应用,属于基础题.18、(1),,(2)猜想:,证明见解析【解析】
(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题19、(1)见解析;(2)见解析;【解析】
(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.20、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019粤教版 高中美术 必修1 美术鉴赏《第四单元 外国美术鉴赏》大单元整体教学设计2020课标
- 2024届河北省正定县七中3月高三一轮复习摸底考试(线上)数学试题
- 2024届贵州省铜仁市铜仁伟才学校高三寒假考试(一)数学试题
- 2024届广东顺德华侨中学招生全国统一考试内参模拟测卷(一)(全国3卷)数学试题
- 叉车三包维修合同模板
- 材料员劳动合同
- 玻璃吊装安全协议书范本
- 北京市政府合同管理办法
- 园区应急管理介绍
- 规划现状分析图
- 医疗纠纷处理培训
- 新高考教学质量考核方案
- (完整版)韩国商法
- 体育课教学活动设计方案
- 中华民族共同体概论课件第六讲五胡入华与中华民族大交融(魏晋南北朝)
- 2024中国南水北调集团东线有限公司招聘笔试参考题库含答案解析
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 【课件】Unit+3Extended+reading+Of+Friendship+说课课件牛津译林版(2020)高中英语必修第一册
- 注射相关感染预防与控制
- 2024年广东佛山市三水海江昇平建设工程有限公司招聘笔试参考题库附带答案详解
- 4.1DNA是主要的遗传物质课件高一下学期生物人教版必修2
评论
0/150
提交评论