江西省恒立中学2025届数学高一下期末质量检测模拟试题含解析_第1页
江西省恒立中学2025届数学高一下期末质量检测模拟试题含解析_第2页
江西省恒立中学2025届数学高一下期末质量检测模拟试题含解析_第3页
江西省恒立中学2025届数学高一下期末质量检测模拟试题含解析_第4页
江西省恒立中学2025届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省恒立中学2025届数学高一下期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.2.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.3.已知平面向量,,且,则实数的值为()A. B. C. D.4.若,则在中,正数的个数是()A.16 B.72 C.86 D.1005.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.86.下列函数所具有的性质,一定成立的是()A. B.C. D.7.已知函数,则在上的单调递增区间是()A. B. C. D.8.已知,其中,则()A. B. C. D.9.已知,则向量与向量的夹角是()A. B. C. D.10.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则____;12.已知平面向量,,满足:,且,则的最小值为____.13.若、是方程的两根,则__________.14.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.15.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.16.已知直线与圆交于两点,若,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.18.已知三角形ABC的顶点为,,,M为AB的中点.(1)求CM所在直线的方程;(2)求的面积.19.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.20.已知函数,,且是R上的奇函数,(1)求实数a的值;(2)判断函数)的单调性(不必说明理由),并求不等式的解集;(3)若不等式对任意的恒成立,求实数b的取值范围.21.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.2、A【解析】

根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.3、B【解析】

先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.4、C【解析】

令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.5、A【解析】,选A.6、B【解析】

结合反三角函数的性质,逐项判定,即可求解.【详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【点睛】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】

先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题8、D【解析】

先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【详解】因为,且,所以,因为,所以,因此,从而,,选D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.9、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算10、A【解析】

直接利用等比数列前n项和公式求.【详解】由题得.故选A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.12、-1【解析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.13、【解析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.14、262【解析】

根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.15、【解析】

根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.16、【解析】

根据点到直线距离公式与圆的垂径定理求解.【详解】圆的圆心为,半径为,圆心到直线的距离:,由得,解得.【点睛】本题考查直线与圆的应用.此题也可联立圆与直线方程,消元后用弦长公式求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【点睛】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。18、(1)(2)【解析】

(1)先求出点M的坐标,再写出直线的两点式方程化简即得解;(2)求出和点A到直线CM的距离即得解.【详解】(1)AB中点M的坐标是,所以中线CM所在直线的方程是,即.(2),因为直线CM的方程是,所以点A到直线CM的距离是,又,所以.【点睛】本题主要考查直线方程的求法,考查两点间的距离的计算和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平.19、(1)3;(2).【解析】

(1)先用二倍角公式化简,再根据正弦定理即可解出;(2)用正弦定理分别表示,再用三角形内角和及和差公式化简,转化为三角函数求最值.【详解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周长:,又因为,所以.因此周长的取值范围是.【点睛】本题考查了正余弦定理解三角形,三角形求边长取值范围常用的方法:1、转化为三角函数求最值;2、基本不等式.20、(1)0(2),(3)【解析】

(1)根据奇函数的性质可得.,由此求得值(2)函数在上单调递增,根据单调性不等式即可(3)不等式..分离参数即可.【详解】(1),是上的奇函数..即得:.即,得:.,.(2)由(1)得.函数在上单调递增,由不等式得不等式.所以,解得不等式的解集为,.(3)由不等式在上恒成立,可得,即.当时,,当,时,.令,.故实数b的取值范围.【点睛】本题主要考查指数型复合函数的性质以及应用,函数的奇偶性的应用,以及函数的恒成立问题,属于中档题.21、(1);(2);(3)线性回归方程是可靠的.【解析】

(1)用列举法求出基本事件数,计算所求的概率值;(2)由已知数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论