版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省通许县丽星中学数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,则()A. B. C. D.2.若,则三个数的大小关系是()A. B.C. D.3.如图,若长方体的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段的长是()A. B. C.28 D.4.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.5.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.66.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或97.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm8.经过原点且倾斜角为的直线被圆C:截得的弦长是,则圆在轴下方部分与轴围成的图形的面积等于()A. B. C. D.9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.410.若点在圆外,则a的取值范围是()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,则______.12.已知满足约束条件,则的最大值为__________.13.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.14.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为___________。15.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________16.已知为钝角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值:(2)求的值.18.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?19.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.20.设函数.(1)求函数的单调递增区间;(2)当时,求函数的值域.21.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【详解】根据等比数列性质:成等比数列,设则,;故选:C【点睛】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.2、A【解析】
根据对数函数以及指数函数的性质比较,b,c的大小即可.【详解】=log50.2<0,b=20.5>1,0<c=0.52<1,则,故选A.【点睛】本题考查了对数函数以及指数函数的性质,是一道基础题.3、A【解析】
由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【点睛】本题主要考查简单几何体的结构特征,属于基础题型.4、D【解析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.5、D【解析】
去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【详解】平均数,方差,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.6、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。7、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.8、A【解析】
由已知利用垂径定理求得,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为,圆的圆心坐标为,半径为.圆心到直线的距离.则,解得.圆的圆心坐标为,半径为1.如图,,则,.,,圆在轴下方部分与轴围成的图形的面积等于.故选:.【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题.9、A【解析】
根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.10、C【解析】
先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.12、57【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.13、【解析】
由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【点睛】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.14、3;【解析】
由三视图还原几何体,根据垂直关系和勾股定理可求得各棱长,从而得到最长棱的长度.【详解】由三视图可得几何体如下图所示:其中平面,,,,,,四棱锥最长棱为本题正确结果:【点睛】本题考查由三视图还原几何体的相关问题,关键是能够准确还原几何体中的长度和垂直关系,从而确定最长棱.15、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.16、.【解析】
利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角的正弦公式化简即可求值.【详解】(1)因为且所以;(2).【点睛】本题主要考查了三角函数的化简与求值,关键是利用诱导公式、同角三角函数的基本关系以及辅助角公式来求解,属于中档题.18、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】
(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知识,包含通项公式的求法、前n项和的求法及数列的单调性.19、证明见解析【解析】
证明:平面,平面,且,平面,平面ABD,平面平面,
.20、(1)函数递增区间为,(2)【解析】
(1)化简,再根据正弦函数的单调增区间即可.(2)根据(1)的结果,再根据求出的范围结合图像即可.【详解】解:(1)由,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年透明锐钛型光触媒项目投资价值分析报告
- 2024至2030年缝纫针项目投资价值分析报告
- 2024至2030年文件储柜项目投资价值分析报告
- 2024年高清晰度监视器项目可行性研究报告
- 2024至2030年中国茶黄素数据监测研究报告
- 2024至2030年中国连续型电动执行器行业投资前景及策略咨询研究报告
- 2024个人工程合同范本
- 2024至2030年中国油锯配件数据监测研究报告
- 2024商务中介合同中介合同
- 2024广东省劳动合同下载
- 土壤污染重点监管单位隐患排查技术指南第4部分:医药制造业
- 变压器二手买卖合同范本2024年
- 2024年全国高考Ⅰ卷英语试题及答案
- 个人不再信访承诺书
- 2024年交通运输行政执法资格考试试题
- 2024年山西航空产业集团限公司校园招聘(高频重点提升专题训练)共500题附带答案详解
- NB-T 10436-2020 电动汽车快速更换电池箱冷却接口通.用技术要求
- 毓璜顶医院出院记录
- 人教版高中地理选择性必修1第一章地球的运动单元检测含答案
- 承包蟹塘合同
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
评论
0/150
提交评论