山西省忻州市第二中学高三第二次联考新高考数学试卷及答案解析_第1页
山西省忻州市第二中学高三第二次联考新高考数学试卷及答案解析_第2页
山西省忻州市第二中学高三第二次联考新高考数学试卷及答案解析_第3页
山西省忻州市第二中学高三第二次联考新高考数学试卷及答案解析_第4页
山西省忻州市第二中学高三第二次联考新高考数学试卷及答案解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市第二中学高三第二次联考新高考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足,当时,,则()A.或 B.或C.或 D.或2.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.984.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于5.已知满足,则的取值范围为()A. B. C. D.6.已知全集,集合,,则()A. B. C. D.7.的展开式中,含项的系数为()A. B. C. D.8.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.9.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.10.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.11.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.12.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足(2x-y)2+4y14.已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________15.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.16.如图所示的流程图中,输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.(1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.18.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.19.(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:20.(12分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.21.(12分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.22.(10分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.2、A【解析】

将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.3、C【解析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.4、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.5、C【解析】

设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.6、B【解析】

直接利用集合的基本运算求解即可.【详解】解:全集,集合,,则,故选:.【点睛】本题考查集合的基本运算,属于基础题.7、B【解析】

在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8、C【解析】

可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.9、D【解析】

根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.10、A【解析】

因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.11、A【解析】

将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12、B【解析】

根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

直接利用柯西不等式得到答案.【详解】根据柯西不等式:2x-y2+4y当2x-y=2y,即x=328故答案为:2.【点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.14、【解析】

依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有解得,故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。15、【解析】

根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.16、4【解析】

根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,,,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平行,证明见解析;(2).【解析】

(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,,则平面,在利用锥体的体积公式即可.【详解】(1)证明:因翻折后、、重合,∴应是的一条中位线,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题.18、(1)证明见解析;(2).【解析】

(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.19、(1)(2)当时,年利润最大.【解析】

(1)方法一:令,先求得关于的回归直线方程,由此求得关于的回归直线方程.方法二:根据回归直线方程计算公式,计算出回归直线方程.方法一的好处在计算的数值较小.(2)求得w的表达式,根据二次函数的性质作出预测.【详解】(1)方法一:取,则得与的数据关系如下123457.06.55.53.82.2,,,.,,关于的线性回归方程是即,故关于的线性回归方程是.方法二:因为,,,,,所以,故关于的线性回归方程是,(2)年利润,根据二次函数的性质可知:当时,年利润最大.【点睛】本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,考查运算求解能力,属于中档题.20、(1)单调增区间,单调减区间为,;(2)有2个零点,证明见解析;(3)【解析】

对函数求导,利用导数的正负判断函数的单调区间即可;函数有2个零点.根据函数的零点存在性定理即可证明;记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:①当时,利用函数的单调性将问题转化为的问题;②当时,当时,在上恒成立,从而求得的取值范围.【详解】(1)由题意知,,列表如下:020极小值极大值所以函数的单调增区间为,单调减区间为,.(2)函数有2个零点.证明如下:因为时,所以,因为,所以在恒成立,在上单调递增,由,,且在上单调递增且连续知,函数在上仅有一个零点,由(1)可得时,,即,故时,,所以,由得,平方得,所以,因为,所以在上恒成立,所以函数在上单调递减,因为,所以,由,,且在上单调递减且连续得在上仅有一个零点,综上可知:函数有2个零点.(3)记函数,下面考察的符号.求导得.当时恒成立.当时,因为,所以.∴在上恒成立,故在上单调递减.∵,∴,又因为在上连续,所以由函数的零点存在性定理得存在唯一的,使,∴,因为,所以∴因为函数在上单调递增,,所以在,上恒成立.①当时,在上恒成立,即在上恒成立.记,则,当变化时,,变化情况如下表:极小值∴,故,即.②当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论