浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题_第1页
浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题_第2页
浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题_第3页
浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题_第4页
浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省考试院抽学校高三下学期命题预测及题型示例新高考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于任意,函数满足,且当时,函数.若,则大小关系是()A. B. C. D.2.函数的图象大致是()A. B.C. D.3.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.4.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.5.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.6.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知,若方程有唯一解,则实数的取值范围是()A. B.C. D.8.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.9.已知集合,,若,则实数的值可以为()A. B. C. D.10.设为等差数列的前项和,若,,则的最小值为()A. B. C. D.11.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为()A. B.C. D.12.的展开式中含的项的系数为()A. B.60 C.70 D.80二、填空题:本题共4小题,每小题5分,共20分。13.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=________.14.若,则________.15.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.16.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.18.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,.(1)求数列与的通项公式;(2)求数列的前n项和.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.21.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22.(10分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..2、A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.3、D【解析】

根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.4、C【解析】

根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.5、D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法6、D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.7、B【解析】

求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.【详解】解:令,则,则,故,如图示:由,得,函数恒过,,由,,可得,,,若方程有唯一解,则或,即或;当即图象相切时,根据,,解得舍去),则的范围是,故选:.【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.8、D【解析】

使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.9、D【解析】

由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.10、C【解析】

根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.11、A【解析】

由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因为函数的图象由图象向右平移个单位长度而得到,所以.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.12、B【解析】

展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、{5}【解析】易得A∪B=A={1,3,9},则∁U(A∪B)={5}.14、13【解析】

由导函数的应用得:设,,所以,,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【详解】解:设,,所以,,又,所以,即,取得:,又,所以,故,故答案为:13【点睛】本题考查了导函数的应用、二项式定理,属于中档题15、【解析】

从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16、【解析】

联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,,,,,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】

(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.18、(1);(2)【解析】

(1)设数列的公差为d,由可得,,由即可解得,故,由,即可解得,进而求得.(2)由(1)得,,利用分组求和及错位相减法即可求得结果.【详解】(1)设数列的公差为d,数列的公比为q,由可得,,整理得,即,故,由可得,则,即,故.(2)由(1)得,,,故,所以,数列的前n项和为,设①,则②,②①得,综上,数列的前n项和为.【点睛】本题考查求等差等比的通项公式,考试分组求和及错位相减法求数列的和,考查学生的计算能力,难度一般.19、(1):;:.(2)【解析】

(1)由可得,由,消去参数,可得直线的普通方程为.由可得,将,代入上式,可得,所以曲线的直角坐标方程为.(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,,,所以.20、(1):,直线:;(2).【解析】

(1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;(2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、【详解】(1)消去参数可得曲线的普通方程是,即,代入得,即,∴曲线的极坐标方程是;由,化为直角坐标方程为.(2)设,则,,,当时,取得最大值为.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公式可轻松自如进行极坐标方程与直角坐标方程的互化.21、(1),(1,2);(2)存在,【解析】

(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.22、(1)证明见解析;(2)存在,.【解析】

(1)根据题意证出,,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论