版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省“名校联盟”2025届数学高一下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法错误的是()A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2B.身高和体重具有相关关系C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6名D.两个变量间的线性相关性越强,则相关系数的值越大2.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.4.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.5.已知向量若为实数,则=()A.2 B.1 C. D.6.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是()A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定7.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为18.已知数列中,,,则等于()A. B. C. D.9.直线与直线平行,则实数a的值为()A. B. C. D.610.设为中的三边长,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,内角,,所对的边分别是,,,且,,则的值为__________.12._________.13.数列中,,则____________.14.若为锐角,,则__________.15.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设,则阴影部分的面积是__________.16.已知点,,若向量,则向量______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,18.已知关于的不等式.(1)当时,求不等式的解集;(2)当且m≠1时,求不等式的解集.19.中,角的对边分别为,且.(I)求的值;(II)求的值.20.在中,,.(1)求角B的大小;(2)的面积,求的边BC的长.21.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用平均数和方差的定义,根据线性回归的有关知识和分层抽样原理,即可判断出答案.【详解】对于A:若样本的平均数为5,标准差为1,则样本的平均数2×5+1=11,标准差为2×1=2,故正确对于B:身高和体重具有相关关系,故正确对于C:高三学生占总人数的比例为:所以抽取20名学生中高三学生有名,故正确对于D:两个变量间的线性相关性越强,应是相关系数的绝对值越大,故错误故选:D【点睛】本题考查了线性回归的有关知识,以及平均数和方差、分层抽样原理的应用问题,是基础题.2、D【解析】
根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.3、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A4、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.5、D【解析】
求出向量的坐标,然后根据向量的平行得到所求值.【详解】∵,∴.又,∴,解得.故选D.【点睛】本题考查向量的运算和向量共线的坐标表示,属于基础题.6、C【解析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C。故选C。7、C【解析】
根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率8、A【解析】
变形为,利用累加法和裂项求和计算得到答案.【详解】故选:A【点睛】本题考查了累加法和裂项求和,意在考查学生对于数列方法的灵活应用.9、A【解析】
直接利用斜率相等列方程求解即可.【详解】因为直线与直线平行,所以,故选:A.【点睛】本题主要考查两直线平行的性质:斜率相等,属于基础题.10、B【解析】
由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用余弦定理变形可得,从而求得结果.【详解】由余弦定理得:本题正确结果:【点睛】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.12、【解析】
根据诱导公式和特殊角的三角函数值可计算出结果.【详解】由题意可得,原式.故答案为.【点睛】本题考查诱导公式和特殊三角函数值的计算,考查计算能力,属于基础题.13、1【解析】
利用极限运算法则求解即可【详解】故答案为:1【点睛】本题考查数列的极限,是基础题14、【解析】因为为锐角,,所以,.15、【解析】
:设两个半圆交于点,连接,可得直角扇形的面积等于以为直径的两个半圆的面积之和,平分,可得阴影部分的面积.【详解】解:设两个半圆交于点,连接,,∴直角扇形的面积等于以为直径的两个半圆的面积之和,由对称性可得:平分,故阴影部分的面积是:.故答案为:.【点睛】本题主要考查扇形的计算公式,相对不难.16、【解析】
通过向量的加减运算即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,难度很小.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解析】
(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解;(2)注意到时,利用基本不等式取不到等号,转而利用双勾函数的单调性求解.【详解】(1)由题意可知,汽车从地到地所用时间为小时,全程成本为,.当,时,,当且仅当时取等号,所以,汽车应以的速度行驶,能使得全程行驶成本最小;(2)当,时,,由双勾函数的单调性可知,当时,有最小值,所以,汽车应以的速度行驶,才能使得全程运输成本最小.【点睛】本题考查基本不等式的应用,解题的关键就是建立函数模型,得出函数解析式,并通过基本不等式进行求解,考查学生数学应用能力,属于中等题.18、(1);(2)当时,解集为;当或时,解集为【解析】
(1)当时,不等式是一个不含参的二次不等式,分解因式,即可求得;(2)对参数进行分类讨论,从而确定不等式的解集.【详解】(1)当时,原不等式为故其解集为(2)令则方程两根为.因为所以①当即时,解集为;②当即或时,解集为.综上可得:①当即时,解集为;②当即或时,解集为.【点睛】本题考查不含参二次不等式的求解,以及含参不等式的求解,属基础题.19、(1);(2)5【解析】试题分析:(1)依题意,利用正弦定理及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,从而利用两角和的正弦可求得sin(A+B)=,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.试题解析:(1)由正弦定理可得,即:,∴,∴.(2由(1),且,∴,∴,∴==.由正弦定理可得:,∴.20、(1);(2)【解析】
(1)由条件可,展开计算代入,即可得;(2)先利用正弦定理求出,再利用面积可得,解方程可得,再利用余弦定理可求得边BC的长.【详解】解:(1)在中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年冰品购销合同范本大全
- 培训课件 -如何做好这个生意NDO
- 健康活动做个快乐的自己
- 2024减肥连锁店加盟合同
- 2024标准郑州市劳动合同范本
- 2024至2030年中国移动式苗床数据监测研究报告
- 2024至2030年中国钽材行业投资前景及策略咨询研究报告
- 2024年达美航空项目综合评估报告
- 2024至2030年中国粉红色防静电指套数据监测研究报告
- 2024至2030年中国片式微调电容数据监测研究报告
- 国家开放大学中级财务会计二形成性考核作业参考答案
- 工程项目复盘模板(PPT)
- 感染性物质的运输管理与操作规范课件
- 《 东北三省》课件 (公开课获奖)2022年商务星球版地理
- 胸腔穿刺术液体脚本
- 六年级劳动教育5.基地小专家(扦插)(课件)
- 10-源代码编译指南
- 脑卒中溶栓相关知识考核试卷(试题与答案)
- 《招标投标法》学习培训
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
评论
0/150
提交评论