2025届山东省青岛三中高一数学第二学期期末经典模拟试题含解析_第1页
2025届山东省青岛三中高一数学第二学期期末经典模拟试题含解析_第2页
2025届山东省青岛三中高一数学第二学期期末经典模拟试题含解析_第3页
2025届山东省青岛三中高一数学第二学期期末经典模拟试题含解析_第4页
2025届山东省青岛三中高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省青岛三中高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点在原点,始边与轴的正半轴重合,终边落在射线上,则()A. B. C. D.2.函数的定义域是(

)A. B. C. D.3.若展开式中的系数为-20,则等于()A.-1 B. C.-2 D.4.已知为等差数列,,,则等于().A. B. C. D.5.在中,角,,所对的边分别为,,,若,,,则的值为()A. B. C. D.6.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.7.直线l:与圆C:交于A,B两点,则当弦AB最短时直线l的方程为A. B.C. D.8.已知为第一象限角,,则()A. B. C. D.9.已知,则的值为()A. B.1 C. D.10.已知是定义在上的奇函数,且满足,当时,,则函数在区间上所有零点之和为()A.4 B.6 C.8 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.12.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.13.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.14.己知数列满足就:,,若,写出所有可能的取值为______.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.在中,,且,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.18.在中,D是线段AB上靠近B的一个三等分点,E是线段AC上靠近A的一个四等分点,,设,.(1)用,表示;(2)设G是线段BC上一点,且使,求的值.19.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.20.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.21.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

在的终边上取点,然后根据三角函数的定义可求得答案.【详解】在的终边上取点,则,根据三角形函数的定义得.故选:D【点睛】本题考查了利用角的终边上的点的坐标求三角函数值,属于基础题.2、B【解析】

根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选B.【点睛】本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.3、A【解析】由,可得将选项中的数值代入验证可得,符合题意,故选A.4、B【解析】

利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出.【详解】解:为等差数列,,,,,,,,,.故选:【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5、B【解析】

先利用面积公式得到,再利用余弦定理得到【详解】余弦定理:故选B【点睛】本题考查了面积公式和余弦定理,意在考查学生的计算能力.6、D【解析】

甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.7、A【解析】

先求出直线经过的定点,再求出弦AB最短时直线l的方程.【详解】由题得,所以直线l过定点P.当CP⊥l时,弦AB最短.由题得,所以.所以直线l的方程为.故选:A【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、B【解析】

由式子两边平方可算得,又由,即可得到本题答案.【详解】因为,,,,所以.故选:B【点睛】本题主要考查利用同角三角函数的基本关系及诱导公式化简求值.9、B【解析】

化为齐次分式,分子分母同除以,化弦为切,即可求解.【详解】.故选:B.【点睛】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.10、C【解析】

根据函数的奇偶性和对称性,判断出函数的周期,由此画出的图像.由化简得,画出的图像,由与图像的交点以及对称性,求得函数在区间上所有零点之和.【详解】由于,故是函数的对称轴,由于为奇函数,故函数是周期为的周期函数,当时,,由此画出的图像如下图所示.令,注意到,故上述方程可化为,画出的图像,由图可知与图像都关于点对称,它们两个函数图像的个交点也关于点对称,所以函数在区间上所有零点之和为.故选:C.【点睛】本小题主要考查函数的奇偶性、对称性以及周期性,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、825【解析】

以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.12、【解析】

如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.13、【解析】

根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.14、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=515、【解析】

利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、【解析】

∵在△ABC中,∠ABC=60°,且AB=5,AC=7,

∴由余弦定理,可得:,

∴整理可得:,解得:BC=8或−3(舍去).考点:1、正弦定理及余弦定理;2、三角形内角和定理及两角和的余弦公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)在中,由正弦定理及题设条件,化简得,即可求解.(2)由题意,根据题设条件,列出方程,求的,得到,即可求解周长.【详解】(1)在中,由正弦定理及已知得,化简得,,所以.(2)因为,所以,又的面积为,则,则,所以的周长为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1)(2)【解析】

(1)依题意可得、,再根据,计算可得;(2)设存在实数,使得,由因为,所以存在实数,使,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D是线段AB上靠近B的一个三等分点,所以.因为E是线段AC上靠近A的一个四等分点,所以,所以.因为,所以,则.又,.所以.(2)因为G是线段BC上一点,所以存在实数,使得,则因为,所以存在实数,使,即,整理得解得,故.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.19、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;

(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.20、(1)(2)只有一项【解析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【点睛】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题21、(1)见证明;(2)【解析】

(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论